

Lecture Notes in Artificial Intelligence 4897
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Matteo Baldoni Tran Cao Son
M. Birna van Riemsdijk MichaelWinikoff (Eds.)

Declarative
Agent Languages
and Technologies V

5th International Workshop, DALT 2007
Honolulu, HI, USA, May 14, 2007
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Matteo Baldoni
Università di Torino, Dipartimento di Informatica
Via Pessinetto 12, 10149 Turin, Italy
E-mail: baldoni@di.unito.it

Tran Cao Son
New Mexico State University, Department of Computer Science
P.O.Box 30001, MSC CS, Las Cruces, NM 88003, USA
E-mail: tson@cs.nmsu.edu

M. Birna van Riemsdijk
Ludwig-Maximilians-Universität München, Institut für Informatik
Oettingenstr. 67, 80538 Munich, Germany
E-mail: riemsdijk@pst.ifi.lmu.de

Michael Winikoff
RMIT University, School of Computer Science and Information Technology
GPO Box 2476V Melbourne, Australia
E-mail: michael.winikoff@rmit.edu.au

Library of Congress Control Number: 2007942738

CR Subject Classification (1998): I.2.11, C.2.4, D.2.4, D.2, D.3, F.3.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-77563-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77563-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12211814 06/3180 5 4 3 2 1 0

Preface

The workshop on Declarative Agent Languages and Technologies (DALT), in its
fifth edition this year, is a well-established forum for researchers interested in
sharing their experiences in combining declarative and formal approaches with
engineering and technology aspects of agents and multi-agent systems.

DALT 2007 was held as a satellite workshop of AAMAS 2007, the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
in May 2007 in Honolulu, Hawai’i. Following the success of DALT 2003 in Mel-
bourne (LNAI 2990), DALT 2004 in New York (LNAI 3476), DALT 2005 in
Utrecht (LNAI 3904), and DALT 2006 in Hakodate (LNAI 4327), the workshop
again provided a discussion forum to both (a) support the transfer of declarative
paradigms and techniques to the broader community of agent researchers and
practitioners, and (b) to bring the issue of designing complex agent systems to
the attention of researchers working on declarative languages and technologies.

The aim of the DALT workshop is to stimulate research on formal and declar-
ative approaches both for developing the foundations of multi-agent systems as
well as for all phases of engineering multi-agent systems, i.e., for specification
and modeling, for implementation, and for verification. By providing a forum
for the presentation of ideas addressing both of these aspects, DALT encourages
the integration of formal and declarative techniques and methods that are based
on solid theoretical foundations, in the engineering of multi-agent systems.

As agents are increasingly endowed with mechanisms for behaving flexibly
and autonomously in open and dynamic environments, it becomes more and
more important that they are engineered to ensure both adaptability and a cer-
tain level of predictability. While providing a certain level of predictability is
important for any software, it is especially important for multi-agent systems
in which the agents are autonomous and adaptive. Formal and declarative tech-
nologies both for specification and verification as well as for implementation can
provide this required predictability. Ensuring a certain level of predictability is
important for the adoption of multi-agent technology in practice, as users have
to trust a multi-agent system to behave as required even though the agents are
autonomous and adaptive.

An ongoing challenge for the DALT community is the investigation of formal
and declarative techniques for the specification and implementation of rational
agents. Moreover, techniques for structuring a multi-agent system and for facili-
tating cooperation among agents such as organizational views of agent systems,
norms, teams, coordination mechanisms, and argumentation and negotiation
techniques are becoming increasingly important and are challenging for DALT.
Further, there are several areas that have commonalities with multi-agent sys-
tems and to which declarative agent languages and technologies can be applied,

VI Preface

such as the Semantic Web, service-oriented systems, component-based systems,
security, and electronic contracting.

There is thus an ongoing and even increasing demand for formal and declar-
ative approaches for the development of multi-agent systems. In this volume, we
report on the latest results in this area.

The volume contains the 11 contributed articles that were selected by the
Programme Committee for presentation at the workshop, divided into four sec-
tions, as well as two invited articles, originally presented as short papers at
AAMAS 2007, that have been extended by their authors. The four sections fo-
cus on modeling (one paper), goals (three papers), foundational concepts (four
papers), and communication (three papers). Of the two invited articles, the first
“Joint Conversation Specification and Compliance” is by S. Paurobally and M.
Wooldridge, while the second “Interoperation in Protocol Enactment” is by A. K.
Chopra and M. P. Singh. The volume also includes the article “Agent-Oriented
Modelling: Declarative or Procedural?” by Leon Sterling. Professor Sterling,
from the University of Melbourne, was the invited speaker for this edition of
DALT.

We would like to thank all authors for their contributions, the members of
the DALT Steering Committee for their precious suggestions and support, and
the members of the Programme Committee for their excellent work during the
reviewing phase.

November 2007 Matteo Baldoni
Tran Cao Son

M. Birna van Riemsdijk
Michael Winikoff

Organization

Workshop Organizers

Matteo Baldoni University of Turin, Italy
Tran Cao Son New Mexico State University, USA
M. Birna van Riemsdijk Ludwig-Maximilians-Universität München,

Germany,
Michael Winikoff RMIT University, Melbourne, Australia

Programme Committee

Marco Alberti University of Ferrara, Italy
Natasha Alechina University of Nottingham, UK
Grigoris Antoniou University of Crete, Greece
Matteo Baldoni University of Turin, Italy
Cristina Baroglio University of Turin, Italy
Rafael Bordini University of Durham, UK
Keith Clark Imperial College London, UK
Ulle Endriss University of Amsterdam, Netherlands
Benjamin Hirsch Technical University Berlin, Germany
Shinichi Honiden National Institute of Informatics, Japan
John Lloyd Australian National University, Australia
Viviana Mascardi University of Genova, Italy
John-Jules Ch. Meyer Utrecht University, Netherlands
Enrico Pontelli New Mexico State University, USA
M. Birna van Riemsdijk Ludwig-Maximilians-Universität München,

Germany,
Munindar P. Singh North Carolina State University, USA
Tran Cao Son New Mexico State University, USA
Chiaki Sakama Wakayama University, Japan
Wamberto Vasconcelos University of Aberdeen, UK
Christopher Walton University of Edinburgh, UK
Mirko Viroli University of Bologna, Italy
Michael Winikoff RMIT University, Melbourne, Australia

Additional Reviewers

Martin Caminada
Nirmit Desai

Berndt Farwer Sebastian Sardina
Yasuyuki Tahara

VIII Organization

Steering Committee

João Leite New University of Lisbon, Portugal
Andrea Omicini University of Bologna-Cesena, Italy
Leon Sterling University of Melbourne, Australia
Paolo Torroni University of Bologna, Italy
Pınar Yolum Bogazici University, Turkey

Sponsoring Institutions

Matteo Baldoni has partially been funded by the European Commission and by
the Swiss Federal Office for Education and Science within the 6th Framework
Programme project REWERSE number 506779 (cf. http://rewerse.net), and he
has also been supported by the MIUR PRIN 2005 “Specification and verification
of agent interaction protocols” national project.

M. Birna van Riemsdijk has been supported by the EU project SENSORIA
(IST-2005-016004), which is part of the 6th Framework Programme.

Table of Contents

Invited Talk

Agent-Oriented Modelling: Declarative or Procedural? 1
Leon Sterling

Invited Papers

Joint Conversation Specification and Compliance . 18
Shamimabi Paurobally and Michael Wooldridge

Interoperation in Protocol Enactment . 36
Amit K. Chopra and Munindar P. Singh

Contributed Papers: Modeling

Integrating Agent Models and Dynamical Systems 50
Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Contributed Papers: Goals

Composing High-Level Plans for Declarative Agent Programming 69
Felipe Meneguzzi and Michael Luck

Satisfying Maintenance Goals . 86
Koen V. Hindriks and M. Birna van Riemsdijk

Towards Alternative Approaches to Reasoning About Goals 104
Patricia H. Shaw and Rafael H. Bordini

Contributed Papers: Foundational Concepts

Reflections on Agent Beliefs . 122
John W. Lloyd and Kee Siong Ng

Modeling Agents’ Choices in Temporal Linear Logic 140
Duc Quang Pham, James Harland, and Michael Winikoff

Conflict Resolution in Norm-Regulated Environments Via Unification
and Constraints . 158

Martin J. Kollingbaum, Wamberto Vasconcelos,
Andres Garćıa-Camino, and Timothy J. Norman

X Table of Contents

On the Complexity Monotonicity Thesis for Environment, Behaviour
and Cognition . 175

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Contributed Papers: Communication

Structured Argumentation in a Mediator for Online Dispute
Resolution . 193

Ioan Alfred Letia and Adrian Groza

Extending Propositional Logic with Concrete Domains for Multi-issue
Bilateral Negotiation . 211

Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, and
Francesco M. Donini

Component-Based Standardisation of Agent Communication 227
Frank Guerin and Wamberto Vasconcelos

Author Index . 245

Agent-Oriented Modelling: Declarative or

Procedural?

Leon Sterling

Department of Computer Science and Software Engineering
University of Melbourne, Australia

leonss@unimelb.edu.au

Abstract. The use of agent-oriented models in developing complex,
distributed, open, heterogeneous software is advocated. Agent-oriented
models at the analysis level and design level are described, and a case
study presented. We muse how modelling activity relates to the classical
debate of whether knowledge is declarative or procedural.

1 Background

My introduction to Artificial Intelligence came in a subject attended in 1976, in
my final year of a Science degree at the University of Melbourne. An interesting
topic presented in the class was whether knowledge was declarative or procedu-
ral. Declarative knowledge was characterised as being part of the logic tradition,
with its application in robot planning as per STRIPS [5]. Procedural knowledge
was characterised as encoding knowledge in procedures to be executed, and was
typified by the natural language understanding program, SHRDLU [16] operat-
ing in the blocks world.

Five years later, I was introduced to Prolog [3] in the context of a postdoctoral
research position at the University of Edinburgh. Prolog seemed to resolve the
declarative v procedural debate. Knowledge was clearly both. Good Prolog code
could be read declaratively, but also had a clear, programmable, procedural
interpretation. In the broader research world, the debate died down, perhaps
coincidentally.

Many researchers became excited about Prolog, myself included. The declar-
ative aspect and the ability to reason about knowledge seemed to guarantee
it an important place in Artificial Intelligence and Software Engineering. Well-
written Prolog code had a definite elegance. Prolog received increased promi-
nence through the Japanese Fifth Generation Project.

Prolog was not ideal, however. Throughout the 1980’s, researchers enthusi-
astically worked on improved logic programming languages. Two issues which
were addressed were concurrency and state. A natural extension in the 1990’s
and 2000’s has been to agents, which promote autonomy and distribution. Many
agent researchers have a logic programming background and see agents as being
able to address (some of) Prolog’s limitations.

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. Sterling

While many Prolog applications were built, the language failed to make much
impression on mainstream software developers. One problem was that program-
ming in Prolog was not entirely straightforward - it required a different way
of thinking. My fifteen years of teaching Prolog to graduate and undergradu-
ate students highlighted that Prolog only suited certain learning styles. Another
problem was the lack of a design level [11].

In trying to promote agents, avoiding some of Prolog’s mistakes, and becoming
aware of software engineering, I have been led to modelling. It has been important
to better separate the stages of analysis and design. When invited to give a
presentation at DALT2007, I wondered how my current agent-oriented modelling
research fitted with the active research of the DALT community. A light-hearted
revisiting of the declarative v procedural debate came to mind and forms the
context for this paper.

The paper is organised as follows. The next section presents agent-oriented
modelling, including a discussions of models, agent-oriented software engineering,
and the introduction of a case study, a device for mediating intimacy. Section 3
discusses the conceptual space for the modelling work. Section 4 introduces anal-
ysis level models, goal models and role models, and presents the case study mod-
els. Section 5 introduces design level models, agent models and system overview
diagrams, and demonstrates them for the case study. The models combine as-
pects of the ROADMAP [6,7] and Prometheus [10] methodologies. While there
is little discussion about implementation, anecdotal experience at the University
of Melbourne suggests that a system well designed can be implemented relatively
easily. Section 6 presents some brief comments on declarative v procedural, and
the paper concludes.

2 Agent-Oriented Modelling

Agents do not need introduction to the DALT community. However, in the cir-
cumstances, a brief perspective from the Intelligent Agent Laboratory at the
University of Melbourne is appropriate. Agents are a good metaphor for con-
ceptualizing a socio-technical system. A socio-technical system has been defined
as one that includes hardware and software, has defined operational processes,
and offers an interface, implemented in software, to human users. Within the
lab, we have been building agent-oriented models for a range of diverse socio-
technical systems, including a smart home [12], a framework for evaluating ed-
ucational objectives [14], and airport optimization. The last has resulted in an
Australian Research Council Linkage grant on modeling air traffic control with
an industry partner. Before explaining our agent-oriented modeling, we discuss
agent-oriented software engineering, a topic that has emerged in the last ten
years.

2.1 Agent-Oriented Software Engineering

How does one build a multi-agent system? The research community has a di-
versity of opinions on what to emphasise. The theoreticians claim that once the

Agent-Oriented Modelling: Declarative or Procedural? 3

theory is established, the practice will be straightforward to implement, and so
emphasis should be on theory. The architects claim that if you have the right
architecture, all the rest will follow. The language developers claim that given
the right programming language, it is straightforward for agent developers to be
able to build multi-agent systems.

My claim is different. A multi-agent system is a system with a significant
software component. We should build on what has been learned about develop-
ing software over the last forty years. The perspective I advocate for building
multi-agent systems is a software engineering perspective, which can be loosely
identified with a systems engineering perspective.

The following analogy may be helpful to appreciate software engineering. Con-
sider the task of building a small shed for storage in the backyard of a house, a
common hobby for Australian men in previous decades. Many men and women
may be successful with this task, particularly if they had a practical bent. How-
ever, just because someone built such a storage shed, would not immediately
qualify he or she to build a thirty-floor office building. There is extra knowledge
needed, about building materials, structures, regulations, for example. Now con-
sider the task of writing a computer program to process data. Many men and
women may be successful with this task, particularly if they had a technical
bent. However you wouldn’t automatically trust that person to write an air traf-
fic control system. The missing discipline and knowledge is loosely covered by
the area of software engineering.

A definition of software engineering, developed for Engineers Australia, is
a discipline applied by teams to produce high-quality, large-scale, cost-effective
software that satisfies the users’ needs and can be maintained over time.

Significant words in the definition include discipline, which implies an under-
lying body of knowledge; users, which implies the need for requirements; teams,
which implies the need for communications and interfaces; over time, which im-
plies that the system must be able to be changed without becoming brittle;
high-quality which suggests performance criteria, not only functional capabili-
ties; and large-scale, which means different architectural considerations about
performance and other qualities. Understanding costs and trade-offs in design
will be important. Also important will be recognising the needs of stakeholders,
not only users.

Agent-oriented software engineering then suggests applying software engineer-
ing principles to the development of multi-agent systems. It can be presumed
that the multi-agent system will follow a system development lifecycle. There will
be a stage of gathering requirements. Once the requirements have been elicited,
they are analysed. The analysis goes hand in hand with design, where trade-
offs are expected to be needed to allow the building of a system that meets
users’ requirements, both functional and non-functional. The system must be
implemented, tested and maintained. All these stages should be supported by
methods and tools within an overall methodology. Many agent-oriented software
engineering methodologies have been developed. One useful collection is in [2].

4 L. Sterling

Rather than applying software engineering principles to the development of
multi-agent systems, the term agent-oriented software engineering can also be
interpreted as using agent concepts in the development of software. It is primarily
this alternate interpretation that is adopted in this paper. Before addressing the
case study, it is worth thinking a little about the nature of models and modeling.

2.2 What Is a Model?

Modelling is empowering in a practical sense. If you can model, you are a sig-
nificant part of the way to building something useful. Let us consider ’what is
a model?’ A definition taken from Wordnet (wordnet.princeton.edu) is that a
model is a hypothetical description of a complex entity or process. A model is
constructed to aid in building the system we have in mind. To paraphrase Par-
nas’ well-known characterisation of specifications, a model should be as complex
as it needs to be to reflect the issues the system is being built to address, but
no more complex.

What are some examples of models? A common school project for primary
school children is to build a model of the solar system. In such a model, there is
at least some depiction of individual planets, and the sun. More detailed models
may include moons of planets and asteroids. Better students may try and get
some idea of distance of planets from the sun, by either placing the planets in an
order, or some scaled representation of distance. More ambitious students may
add a dynamic element to the model by having the planets move around their
orbit. Building a good model of the solar system clearly stretches the abilities
of primary school children, and usually their parents.

Agent-oriented models will emphasise goals, activities, and interactions, as
will be described in the next section on the conceptual space. In my experience,
agent-oriented models are a natural way for understanding a system, and allow
for appreciation of a system by external, non-technical stakeholders.

2.3 Secret Touch Case Study

To illustrate agent-oriented modeling, we introduce an application domain in-
vestigated in a research project conducted at the University of Melbourne. The
project was conducted within the Smart Internet Technology Cooperative Re-
search Centre. The research project, entitled ’Mediating Intimacy: Strong-Tie
Relationships’ used ethnographic techniques to study how people may use tech-
nology to mediate intimacy [8]. Ethnography focuses on participatory data col-
lection to understand activity as it happens. The data may provide a rich source
of ideas for technological products. The motivation of the project was to explore
novel technology use for a ’smart Internet.’ Technology in social settings needs
to demonstrably fulfill the felt needs relating to the social environments. These
needs typically include many that are high-level, cognitive, emotional, and hard
to measure, such as playfulness, being engaged in an activity, expressing feelings,
and privacy.

Agent-Oriented Modelling: Declarative or Procedural? 5

Workbooks and diaries were produced by six couples, documenting interac-
tions the couples had throughout the day. From this data, scenarios, or sequences
of activities, were created suggesting technological devices to assist in mediating
intimacy. This view of a scenario is consistent with the agent-oriented models to
be introduced shortly.

One scenario developed was Secret Touch. Secret Touch envisaged a software
system on a small pocket device, which communicates with a partner’s similar
device. Partners can interact discretely and remotely through physically moving
the device in their pocket, causing their partner’s device to move in an identical
fashion.

Inspiration: - Couples wanting to communicate in private. Being playful.
Individuals like fiddling with toys.

Scenario: - They both reach in their pockets during work. She feels that he
is fiddling with the device. She turns the device in the other direction, engaging
in playful activity.

Several interactive sessions led to the Secret Touch multi-agent software sys-
tem design, which we model in Sections 4 and 5. A range of products was de-
signed to cater for diverse opinions about the desirability of intelligent Secret
Touch devices. Table 1 contains the product range, listed from simplest to most
complex.

Table 1. Secret Touch Product Range

Name Description Details
Flirt Risk and openness Open channel, full-duplex

to flirtation communication, i.e. always on

Discrete Flirt Partner chooses Choice of open channel or
level of accessibility modes: ON, OFF, PASSIVE

Fiddler’s Choice Response possibly Add learning or remembering
from agent to either of the above

Guessing Game Who or what is that? An open, dynamic system -
partners and devices change

The simplest device, Flirt, transforms all device movement into touches, which
are instantaneously sent to the partner’s device, as well as immediately trans-
forming all touches received into movement. Simultaneously incoming and outgo-
ing movements are resolved by the device itself, which then moves in a direction
reflecting the vector sum of both touches - potentially a real tug-of-war situation.
The discrete version, Discrete Flirt, enables partners to engage in a turn-taking
dialogue, and allows a device to be switched off or set to passively receive touches
and replay them later, for example, when the important meeting at work is over.
Fiddler’s Choice is an intelligent, learning device. A partner may allow the de-
vice to respond if unable to personally engage. Fiddler’s Choice can also be used
solo, in which the partner is actually a software agent.

6 L. Sterling

3 Conceptual Space

Agent-oriented models need agent-oriented concepts, such as goals and roles.
These terms are not used consistently across the agent community. Rather than
defining each individual concept, we introduce a conceptual space within which
to view systems and classify models.

A key feature of our conceptual space is to layer concepts. The conceptual
space consists of three layers: an environment layer, a system design layer, and
a motivation layer. Three layer architectures have a long history in Artificial
Intelligence and agents. The layers give a way to structure the set of models.

The layers represent an amalgam of the software development stage and level
of abstraction. The more abstract, the earlier in the software development life-
cycle, and the more accessible to external stakeholders without a technical back-
ground. Conversely, the lower the level, the more useful it is to developers, and
the later in the software lifecycle.

Loosely, models within the motivation layer are developed during requirements
elicitation and analysis. Models in the system design layer are developed during
architectural design, and the environment layer is populated during detailed
design, and fleshed out in implementation and deployment.

Two kinds of entities inhabit the models within the conceptual space: abstract
entities and concrete entities. Abstract entities exist neither in space nor in time,
that is they cannot be localized. Examples of abstract entities are mathematical
objects like numbers and sets, modelling abstractions like goals and roles, as well
as types. Concrete entities exist at least in time. They subsume physical entities
that exist in both time and space, and virtual entities that exist merely in time.
Examples of physical entities are humans and machines. Examples of virtual
entities are actions and events.

We describe the three layers from the most abstract to the least abstract.
The motivation layer contains abstract modelling concepts needed for defining
requirements and purposes of a system. Arguably, the most foundational are
the goals of the system, which must be modelled, as well as roles responsible
for achieving the goals. Here goals represent functionalities expected from the
system, while roles are capabilities of the system required for achieving the func-
tionalities. Focussing on both goals and roles is important in our experience.

The organisational structure of roles, consisting of relationships and depen-
dencies between them, are identified within the motivation layer. The motivation
layer should contain social policies that constrain interaction and the behaviour
of any agents playing the roles. They can represent anything from access rights
to social norms to obligations. Social policies are identified based on the rela-
tionships and dependencies between roles.

Permeating the entire conceptual space is knowledge. I believe knowledge
should be made explicit as much as possible. Knowledge at the motivation layer
includes norms and obligations, and also details about the environments and
contexts within which the system is situated and operates. Knowledge of being
at work, location, time, are examples of knowledge relevant for the Secret Touch
system.

Agent-Oriented Modelling: Declarative or Procedural? 7

The system design layer consists of design notions. The central one among
them is the concept of agent. We define an agent as an autonomous entity situ-
ated in an environment capable of both perceiving the environment and acting
on it. Each agent belongs to some agent type that, in turn, is related to one or
more roles from the motivation layer. The decision whether to model an entity as
an active and autonomous entity - agent - or rather as a passive, servant entity -
object - is based on the criterion of helpfulness. That is, if using the abstraction
of agent helps the designer, maintainer, or user to develop, maintain, or use the
socio-technical system, an entity included by it should be modelled as an agent.
For example, from the perspective of maintenance and usage, it can be helpful
to model an e-mail system as an agent, even though the system may have been
designed and implemented using concepts at the lower abstraction level. Simi-
larly, a software agent for finding citations can be modelled and designed as an
agent, but implemented as an HTML script.

Agents enact roles by performing activities. Each activity instantiates some
activity type that specifies functionalities defined by goals at the motivation layer.
Activities are started and sequenced by rules. Rules thus determine when goals
are to be achieved. Rules also govern interactions between agents performed
within activities. Rules thus carry out social policies defined at the motivation
layer. Rules are triggered by perceptions of events by an agent and/or by the
knowledge held by an agent. An activity consists of actions where each action
belongs to some action type. Most of these words are used slightly differently
by different researchers. The description here serves as an informal metamodel.
For example, in the Secret Touch scenario, a rule would be triggered by the
physical perception of a change in the pocket device. What an agent is designed
to perceive is influenced by social policies.

The environment is populated by concrete agents and concrete objects. By
concrete agents and objects, we mean entities, which have concrete manifesta-
tions - concretisations - in the environment. Examples of concrete agents are a
human, a robot, a dog, and a software agent, and as examples of concrete ob-
jects serve a book, a car, and a Web service. A concrete agent like a human may
be a concretisation of the corresponding agent represented at the system design
layer. Analogously, a concrete object of the environment layer may correspond
to a conceptual object represented at the system layer. Concrete agents and
objects belong to the respective concrete agent types and concrete object types,
such as agent and object types of a specific software platform. They are derived
from the agent types and conceptual object types of the system design layer.
Likewise, behavioural construct types of the environment layer are based on the
activity types and rules of the system design layer. Behavioural construct types
are instantiated by the corresponding behavioural constructs.

A concrete agent or object can be described by a set of attributes where
an attribute is either a numeric attribute or a non-numeric attribute. A nu-
meric attribute, like a weight, can be represented as a numerical value, while
a non-numeric attribute, like the colour, is more vague and subjective. At the
environment layer of the conceptual space, the counterparts of action types of

8 L. Sterling

the system design layer are concrete action types. Here an environment can be
either a real physical environment or a virtual one, like a simulated environ-
ment. A concrete action performed by one agent can be perceived as an event
by other agents. For example, a message sent by one software agent to another
is perceived as a message received event by the latter. Events belong to event
types.

An extra level of structuring can be added to the concepts, namely that of
viewpoints. Three useful viewpoints are organization and interaction within the
system, motivation and behaviour, and the explicit information that is needed for
the system, which will of necessity vary in different environments and contexts.
In [13] , a complete description of the models is given. Some of them are described
in the next two sections. Nonetheless it is useful to see in Table 2, a populated
table of models structured by layer and viewpoint.

Table 2. Agent-oriented Models

Abstraction layer Viewpoint
Interaction Information Behaviour

Motivation layer Role models and Environment models Goal models and
organisation models motivational scenarios
and models of
social policies

Design layer Models of Knowledge models Behaviour models and
acquaintances, and service models scenarios
interaction models

Environment layer Agent interface Data models and Agent behaviour
and interaction service specifications specifications
specifications

4 Motivation Layer Models

We now give examples of models from the motivation layer. We present two goal
models (from the behaviour viewpoint) and one role model (from the interaction
viewpoint). The models are ROADMAP models, constructed with the REBEL
tool [7]. The Secret Touch case study was developed using a combination of the
ROADMAP and Prometheus methodologies. Using analysis level models from
other methodologies such as Tropos or MaSE would be similar.

Goal models have three types of components: - goals represented by paral-
lelograms, roles represented by stick figures, and quality goals represented by
clouds. Figure 1 contains the overall goal model for the Secret Touch system.
The overall goal, Secret Touch, has two sub-goals, Flirt and Communicate. A
Partner role is responsible for the Flirt, which by nature is Risky and Playful, the
associated quality goals shown in the diagram. The Flirt goal can be achieved
via the sub-goal Initiate Touch. First, a Touch Initiator role initiates the flirt.
This involves timely achievement of the sub-goal, Capture Touch and accurately
Translating device Movement Into a software data Touch.

Agent-Oriented Modelling: Declarative or Procedural? 9

Returning to Figure 1, another way to achieve the Flirt goal is via the sub-
goal Respond to Flirt. Responding is possible only for the intelligently learning
Fiddler’s Choice product. The goal is to appropriately respond to an incoming
touch in a way that somehow matches. The Choreographer’s role is to Recognize
an Incoming Touch and Propose an appropriate counter-movement or Touch
Movement. This concept builds on habits that often develop within relationships.

Fig. 1. Secret Touch Goal Model

Figure 2 depicts the set of sub-goals under the Communicate goal. Note that
goal models are naturally presented hierarchically. Continuing the explanation,
an incoming touch must be Noticed and Responded to, whereas an outgoing
touch should be Given. The goal to Remember an incoming Touch, a sub-goal
of Respond to Incoming Touch, is available only in the Fiddler’s Choice design.
The Mediate Touch Exchange goal allows a partner to choose availability in the
Discrete Flirt product.

Figure 3 shows the Touch Acceptor Role Model. The list of responsibilities in-
cludes goals associated with the Touch Acceptor in the goal-model diagrams, for
example Notice Incoming Touch. Constraints may document how a quality goal
is to be achieved, or access to knowledge. Actions resulting from partner avail-
ability are listed. The lists of responsibilities and constraints make it easy to give
feedback. They represent important detail of how system behaviour is envisaged,
thus generating lively discussion during requirements elicitation sessions.

The role and goal models facilitated real communication with the researchers,
who were non-technical clients. The flexibility and high-level nature of the mod-
els enabled the software engineer who developed the models to present very

10 L. Sterling

Fig. 2. Communicate Goal Model

Fig. 3. Touch Acceptor Role Model

Agent-Oriented Modelling: Declarative or Procedural? 11

high-level abstractions to the clients. This is important for communication with
non-technical people. The usefulness of agent concepts was confirmed by survey
results and other feedback. Of particular interest were the quality goals, which
also sparked useful discussions. For example, one major requirement was found
to be missing in the original proposed system - described variously as playfulness,
flirting, teasing.

Discussion of the constraints in an Intimacy Mediator role, presented for dis-
cussion in the first iteration, clarified that a major requirement was missing, as
mentioned above, most precisely called enabling a tug-of-war between partners.
Re-thinking these requirements based on the valuable feedback led to the two
products, Flirt and Discrete Flirt, and to the Mediate Touch Exchange goal in
Figure 1 above being completely absent from the basic Flirt product. During
a second feedback presentation, survey responses were overwhelmingly positive.
The interaction designers perceived that their initial feedback was accurately
understood and also fairly well incorporated into the requirements analysis and
design of the system.

The importance of the agent-human analogy was explicitly captured in the
survey responses. The survey question about whether the agent paradigm was
useful for understanding the proposed system received a unanimously positive
response. Quality goals were confirmed to be useful for capturing intangible re-
quirements and goals, as often encountered in social contexts. The interaction
designers reacted very positively to the quality goals in ROADMAP. The value
of quality goals became clearer in the second feedback session, in which docu-
mentation of the requirements was more complete.

5 Design Layer Models

In this section we give some examples of design layer models. We concentrate
on the architectural design level rather than the detailed design level. In the
Secret Touch case study, Prometheus was used for the design level. We give an
example of an interaction diagram from the interaction viewpoint, agent coupling
diagrams, and a system overview diagram which gives an overview of the sytem
behaviour and interactions. Details about the diagrams can be found in [10].
The diagrams were built using PDT, the Prometheus Design Tool available at
www.cs.rmit.edu.au/agents/pdt.

The process that was loosely followed was Choose agents for roles; Specify
behaviour using interaction diagrams and protocols; Describe the overall system
behaviour and interactions with a system overview diagram.

The goal models in Figures 1 and 2 had many roles. These were combined into
four agents. The intimacy handler agent covered five roles: evaluator, touch giver,
communication manager, touch acceptor and intimacy mediator. The partner
handler agent covered three roles: touch initiator, partner, and touch responder.
The device handler agent covered the device manager, touch feeler and touch
perceiver roles, while the resource handler agent covered the librarian and chore-
ographer roles. This is depicted in Figure 4.

12 L. Sterling

Fig. 4. Agent-Role Coupling Diagram

Figure 5 describes an interaction between the partner handler, device handler,
and intimacy handler. The various messages exchanged and percepts observed
proceed sequentially down the page. The interaction starts with the perception
of a desire to flirt, and ends with the touch being returned to the sender.

The final diagram (Figure 6) described in this section is the system overview
diagram which describes the agents in the system (denoted as rectangles), the
percepts they sense (denoted as splats), the protocols they have (double-headed
arrows between agents), and actions taken (arrows). Consider the top right agent,
the device handler. It has three percepts: BeginEnd Touch, Movement, and Find
an accepted Touch, three actions: Inform of Perceived Touch, Move Device, and
Inform Touch was Felt, and is involved with two protocols with the Touch handler
agent, namely Touching and Being Touched.

Agent-Oriented Modelling: Declarative or Procedural? 13

Fig. 5. Agent Interaction Diagram

14 L. Sterling

Fig. 6. Secret Touch System Overview Diagram

System overview diagrams may seem a little complicated to begin with. How-
ever, as the name implies, they do provide a good overview of the logical struc-
ture of the system, including the protocols between agents and which agent
perceives what and takes which action. Prometheus contains a detailed design
level where capabilities and plans are developed for each agent. The designs are
implementation language independent. The designs can be turned into code in a
straightforward way using the agent programming language JACK (www.agent-
software.com) or JADE [1]. We have done a student project discussing how
to decide which agent language is suitable for which design. Factors that were
considered include compatibility of internal architecture, interoperability, dy-
namic behaviour, complexity of design, compatibility of physical environment
with agent platform constraints, connectivity, distribution, and learning curve
versus maintenance cost.

6 Declarative or Procedural?

The last two sections have given examples of agent-oriented models. Models
are ideally executable, and that is essentially the case here. It is reasonably
straightforward to translate the models into software. This is unsurprising as
methodologies such as ROADMAP and Prometheus, which have been described,
were developed for the purpose. Rapidly prototyping models has been presented
by [15], among others. It would be also straightforward to translate into an
object-oriented language such as Java. We have abundant experience within

Agent-Oriented Modelling: Declarative or Procedural? 15

the Intelligent Agent lab at the University of Melbourne with over 100 student
projects in the graduate Intelligent Agent subject building agent designs and
many implementing them.

What is the status of the models described above? Are they declarative? Are
they procedural? Are they hybrid, as is claimed for BDI agents? If they are best
understood as being declarative, then one would want to prove theorems about
their declarative content, such as completeness. If they are best understood as
procedural, one would want to prove theorems about termination and other
procedural properties.

In the presentation at DALT, I was asked about when properties needed to
proved about the models. My response was that it was perhaps counter produc-
tive to prove theorems too early. During elicitation, the non-technical stakehold-
ers need to be encouraged to engage, and proofs don’t encourage engagement
by non-technical stakeholders. Later during design, one may try to prove that
quality attributes may be met.

Many properties need greater definition in order to progress. Security is a
quality attribute that is essential. But the exact level of security needs much
greater definition and understanding of how the property should be interpreted. I
am sure that designs will contain proofs as aids to establish correctness of designs,
but we have some way to go, before we can describe systems appropriately.

Some properties, of course, will never be proved formally. To take an example
from the Secret Touch system, a desirable property is to be flirtatious. Almost
certainly a user study would be needed to track user response and engagement
with the system to fully ascertain whether it is flirtatious. That would be prefer-
able to a theory of flirtatiousness.

Having raised the question of evaluation, we need to address it a little more
explicitly. There are implicit questions about which are the best concepts for
modelling. For example, how should roles be defined. Detailed examination is
beyond the scope of this paper. Evaluation is hard to do formally. From anecdotal
experience, the models scale. For one larger student project reported in [12] the
analysis level models were over 90 pages, yet were easy to read and assess. The
high level models are understandable by non-experts. More technical models
in the dsign and environment layers are ones that would benefit from more
formalization and verification, and work needs to be done on which methods
might work best.

To conclude this section, I would like to consider the adjective elegant. From
my experience with Prolog, there is no doubt that elegance is desirable. As
O’Keefe stresses in the ’Craft of Prolog’, Elegance is not optional. What is true
for Prolog should be true for agent models. In our agent group we have had nu-
merous discussions about the elegance of agent-oriented models, both ours and
others. Reviewers should be encouraged to discuss elegance along with correct-
ness. So, I suggest that declarativeness is analogous to elegance. Perhaps we will
have a track at future DALT meetings as EALT, Elegant Agent languages and
technologies.

16 L. Sterling

7 Conclusions

Agent-oriented models have been presented including goal models and role mod-
els. Models are conceived as belonging to an abstraction layer, closely related
to the stage in the software development lifecycle. Three layers, a motivation
layer, a design layer and an environment layer were discussed. The models can
be given another dimension through viewpoints. The models were demonstrated
with a case study of a device for mediating intimacy. At the University of Mel-
bourne, we have used agent-oriented modelling on a range of projects, and have
anecdotal evidence that the models at the motivation level are useful for non-
technical people to appreciate agent technology. Finally, in light-hearted spirit,
I suggested that declarativeness might be re-cast as elegance.

Acknowledgments. It was a pleasure to have the opportunity to give an in-
vited talk, and to share some of the thoughts in this paper. There are many
people that have influenced my thinking. The Dagstuhl in June 2006 with topic
’PROMAS meets AOSE’ was good for clarifying the range of ways that re-
searchers think about developing multi-agent systems. The path from Prolog to
agents was influenced by the lightweight ARPEGGIO project [4], especially in
discussions with Maurizio Martelli and Viviana Mascardi. Even more influen-
tial has been the Melbourne Agents community, including Liz Sonenberg, Lin
Padgham, Simon Goss, Adrian Pearce, Michael Winikoff, Shanika Karunasek-
era, Kendall Lister, Ayodele Oluyomi, and Kevin Chan. Four people deserve
particular mention and thanks. Thomas Juan persuaded me that agent-oreinted
software engineering was a good area of study and influenced ROADMAP de-
velopment. Kuldar Taveter was responsible for the conceptual space, and view-
points, and we are collaboarating on a book on agent-oriented modelling. Ann
Boettcher developed the Secret Touch case study and has spent a lot of time
thinking how to combine ROADMAP and Prometheus models. Finally Bin Lu
helped with converting the paper to the appropriate LaTeX style. The research
was supported by grant LP0348797 from the Australian Research Council and
two grants from the Smart Internet Technology Cooperative Research Centre.

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester (2007)

2. Bergenti, F., Gleizes, M., Zambonelli, F. (eds.): Methodologies and Software Engi-
neering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer, Dordrecht (2004)

3. Clocksin, Mellish: Programming in Prolog. Springer, Heidelberg (1981)

4. Dart, P., Kazmierczak, E., Martelli, M., Mascardi, V., Sterling, L., Subrahmaniam,
V., Zini, F.: Combining Logical Agents with Rapid Prototyping for Engineering
Distributed Applications. In: Tilley, S., Verner, J. (eds.) Proc. STEP 1999, pp.
40–49. IEEE Computer Society Press, Los Alamitos (1999)

Agent-Oriented Modelling: Declarative or Procedural? 17

5. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

6. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology
for Complex Open Systems. In: Johnson, W., Cristelfranchi, C. (eds.) AAMAS
2002. Proc. First International Joint Conference on Autonomous Agents and Multi-
Agent Systems, pp. 3–10. ACM Press, New York (2002)

7. Kuan, P., Karunasekera, S., Sterling, L.: Improving Goal and Role Oriented Anal-
ysis for Agent Based Systems. In: ASWEC 2005. Proc. Australian Software Engi-
neering Conference, Brisbane, Australia, pp. 40–47 (2005)

8. Kjeldskov, J., Gibbs, M., Vetere, F., Howard, S., Pedell, S., Mecoles, K., Bunyan,
M.: Using Cultural Probes to Explore Mediated Intimacy. Australian Journal of
Information Systems (Special Issue), 102–115 (2004)

9. O’Keefe, R.: The Craft of Prolog. MIT Press, Cambridge (1990)
10. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems. John Wiley,

Chichester (2004)
11. Sterling, L.: Patterns for Prolog programming. In: Kakas, A.C., Sadri, F. (eds.)

Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407,
pp. 374–401. Springer, Berlin (2002)

12. Sterling, L., Taveter, K., and the Daedalus Team: Building Agent-Based Appliances
with Complementary Methodologies. In: JCKBSE 2006. Proc. Joint Conference on
Knowledge-Based Software Engineering, Tallinn, Estonia, pp. 223–232. IOS Press,
Amsterdam (2006)

13. Sterling, L., Taveter, K.: The Art of Agent-Oriented Modelling. MIT Press, Cam-
bridge (2008)

14. Stern, L., Sterling, L.: Toward Agents for Educational Software. In: Proc. ED-
MEDIA 2006, Association for the Advancement of Computing in Education, pp.
2040–2047

15. Taveter, K., Sterling, L.: An Expressway from Agent-Oriented Models to Prototype
Systems. In: Proc. Workshop on Agent-Oriented Software Engineering, Hawaii, pp.
192–206 (May 2007)

16. Winograd, T.: Understanding Natural Language. Academic Press, London (1972)

Joint Conversation Specification and Compliance

Shamimabi Paurobally1 and Michael Wooldridge2

1 University of Westminster, London W1W 6UW, U.K.
S.Paurobally@westminster.ac.uk

2 University of Liverpool, Liverpool L69 3BX, U.K.
mjw@csc.liv.ac.uk

Abstract. Formal specifications of protocol-oriented agent interactions
have focused mainly on the semantics of the constituent agent communi-
cation language (ACL). In existing work, the semantics of a conversation
policy is derived from the semantics of its individual communicative ac-
tions (CA) and there is no notion of persistency and compliance to the
whole conversation policy. We argue that a proper theoretical treatment
of conversations cannot be simply derived compositionally from the se-
mantics of individual CAs. Accordingly, we develop a theory of joint
conversations that is independent of its constituent CAs. We treat the
process of a group following an interaction protocol as a persistent joint
communicative action (JCA) by the group. This paper specifies the LJCA

logic based on Cohen and Levesque 1990 joint intention (JI) theory [2]
and develops a framework in LJCA logic for representing and reasoning
about joint conversations. We define compliance in a joint conversation
and we prove salient properties of joint conversations. Amongst others,
we prove the existence of a Nash equilibrium in a bilateral interaction,
and that our framework ensures an agent’s compliance to the rules of the
interaction in the sense that each participant jointly intends to uphold
the whole conversation and to adhere to the conversation policy.

Keywords: compliance, joint conversation, communicative action,
intention.

1 Introduction

Social interactions, such as cooperation, coordination and negotiation, are en-
acted through a variety of agent communication languages (ACLs) and inter-
action protocols (IPs). An ACL (for example KQML, FIPA ACL [5]) specifies
the individual communicative acts (CAs), typically as classes of asynchronous
messages modelled on the theory of speech acts. An interaction protocol, like
the contract net protocol (CNP), or an English auction protocol, aims to specify
the message sequences that lead to a end state such as a (sold ∧ closed) auction.
Ideally, in an agent world, each message would be the content conveyed by an
individual communicative act of the ACL. However, the published specifications
of protocols suffer from ambiguities and incompleteness. This lack of precision
arises from the inherent inexpressiveness of diagrammatic representations such

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 18–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Joint Conversation Specification and Compliance 19

as Petri-nets [11] and AUML [1], and from a focus on a conceptual level of dis-
cussion using informal language rather than mathematics. Consequently, while
the published protocol specifications may well be helpful for comprehension, in
practice they are inadequate for formal verification of correctness.

Proposed semantics for ACLs and conversation policies can be categorised into
belief-intention semantics (as in FIPA ACL [5]), commitment-based semantics
[17] and joint intention (JI) [2] based semantics [7]. In all of these cases, the
semantics of the interaction protocols (IPs) have been proposed as the post-
conditions holding after two or three CAs. Their approach is to first specify the
semantics of the individual CAs in the ACL in the belief-intention, commitment-
based or JI theories respectively. Then the semantics of the conversation policies
are specified as what holds after sending two or three of the CAs in sequence. For
example, in [7] and [14], conversation policies are given as sending a request CA
followed by an agree CA, or a offer CA followed by an inform CA. The semantics
of such conversation policies are defined as what commitment holds after each
CA without taking into account the whole protocol. As in [12], the semantics
of interaction protocols are derived from the postconditions of each CA. We
argue that existing approaches such as the above-mentioned are inadequate for
specifying and reasoning about the semantics of conversation policies for three
main reasons.

The first reason is that a conversation between a group of agents, with respect
to an IP, involves more than the aggregate of the individual CAs. Communica-
tion essentially requires a framework of mutual mental states (beliefs, knowledge,
goals, intentions) and these mental states influence each other. As for joint ac-
tions, a conversation may require that the sending of an individual CA by one
agent depends on another agent’s utterances. When a conversation is underway,
each participant has a part to perform when it is their turn to respond. The per-
formance of an agent’s part has to occur with respect to the other participants’
intentions, leading to some notion of joint commitment and joint control over
the whole conversation and not only for some of the CAs. Thus a conversation
is more than the sequence of its CAs.

The second reason is that there is the need for compliance and persistency of
this compliance throughout the whole conversation according to the rules of the
interaction. For example, when the bidder x and the auctioneer y are involved
in an English auction, each time x makes a bid, y should inform x whether
its bid was successful or not. The auctioneer y should not arbitrarily choose to
stop complying to the protocol and withdraw without a consensus between the
participants. Although [7] specifies the semantics of several speech-acts in terms
of persistent goals, there is no notion of compliance and persistency to follow the
whole protocol. For example, [7] does not define the inform CA as a persistent
goal and this is correct. However, there would be no notion of persistent goal to
be achieved and thus no compliance in a conversation policy that contains one
or more inform CAs.

The third limitation of existing approaches in the semantics for conversation
policies lies in that we should be able to specify what it means to follow an

20 S. Paurobally and M. Wooldridge

IP independent of its constituent CAs and ACL. What is the semantics of the
conversation policy that sequences the CAs phrase1, thing2, sentence3 and word4?
We should be able to specify what it means to follow such a conversation policy.
A group engages in such a conversation in order to cooperate and jointly achieve
some goal. This translates to a group member jointly intending the group’s goal
because in some way contributing to the group’s goal helps that member to
satisfy its own individual goal. We can refer to a group following an auctioning
protocol without needing to know which specific CAs are used. Thus semantics
for IPs are different from the ACL semantics.

Against the above three arguments, it can be seen that there are a number of
social constraints on an agent and consequently on a group when carrying out a
conversation. Our paper advances the state of the art by proposing an approach
based on the joint intention theory in order to remedy the above shortcomings.
We specify the LJCA logic and propose a framework to represent joint conver-
sations and compliance to such conversations. We ensure that we reason about
the whole conversation instead of its CAs separately. We prove salient proper-
ties of joint conversations expressed in LJCA such as Nash equilibrium exists
between two agents interacting according to an IP. We also define persistency
throughout a conversation by specifying what it means for an agent to comply
to a conversation policy and proving such compliance holds in our framework,
in the sense that the agents share a joint intention with the group to follow the
actions allowed by the IP and the framework.

The remainder of this paper is structured in the following way. Section 2
gives an overview of the JI theory. In section 3, we specify the syntax, semantics
and axioms in the LJCA logic. In section 4, we develop a framework for joint
conversations in LJCA and we define two notions of compliance to an IP. Section
5 specifies and proves salient properties holding in joint conversations in our
framework. Section 6 discusses related work on the semantics of conversation
policies. Section 7 concludes and identifies possible avenues for future work.

2 Joint Intention Theory

Previously proposed semantics for ACLs include belief-intention semantics as in
FIPA ACL [5], commitment-based semantics [17] and joint intention (JI) based
semantics [3]. These semantics lead to similar styles of semantics for IPs. The
1997 semantic specification for FIPA ACL is expressed using a logic of belief and
intention. While this specification is informative, it has been criticised on various
grounds [16], not least that it is unverifiable. We consider that a belief logic is
a useful ideal for giving epistemic status to the consistent, but not necessarily
true, internal propositions that can be used by a designer to express and reason
about information internal to an agent. Treating intention in a similar way is
also a useful ideal for succinct reasoning about a goal state. The durability of the
Belief-Desire-Intention paradigm for practical deliberative agents also provides
anecdotal justification for this sort of reasoning.

In the case of the JI theory [3] based semantics for CAs [14], the mental states
of the agents incorporate mutual belief between two agents about their respective

Joint Conversation Specification and Compliance 21

Table 1. Notation Used in the Paper

Bel-Int axiom Iiα ↔ BiIiα [9]

G {s, H }
OCCURRING γ γ occurs at the current time point [2]

IGp ∀i ∈ G (Iip)

EGp ∀i ∈ G (Bip)

Kip i knows p
EKGp ∀i ∈ G (Kip)

MB s r p Mutual belief between s and r that p
MB G p ∀i ∈ G, j ∈ G (MB i j p)

JPG s r p q s and r have JPG p wrt. q
JPG G p q ∀i ∈ G, j ∈ G (JPG i j p q)

JI s r γ q JPG s r (DONE {s, r}.[UNTIL
(DONE {s, r}.γ)(MB s r ({s, r}.γ))]?; γ) q

JI G γ q ∀i ∈ G, j ∈ G (JI i j γ q)

CGp EKGα ∧ EK 2
Gα ∧ . . . ∧ EKm

G α ∧ . . .

Atomic process �

Complex process γ

Atomic JCA α J CA((s,H).�)

Complex JCA β J CA(G.γ)

q MB G (¬(DONE G.(β|abort)))

persistent goal to have an action a done unless it is considered to be impossible
or irrelevant. Given that our aim in this paper is to consider interoperation
and teamwork within a group when following an IP, we find that the theory of
JI best fits the types of commitments we need for specifying participation in
a conversation. Thus, in this section, we provide an overview of the JI theory
although we do not faithfully re-use Cohen and Levesque’s [2] notation for beliefs,
intentions and goals. JI theory is specified in first order modal logic with dynamic
logic [6] and epistemic logic connectives [9], including the KD45 axioms for belief.
The Kripke semantics of JI theory is given in [2]. (HAPPENS γ) and (DONE γ)
[2] respectively denote that the process γ will happen next or has just happened.
BEFORE and AFTER are defined using HAPPENS, where BEFORE p q states
that p comes before q.

Regarding mental states, let Bip denote agent i believes proposition p. Let
Gip and Iip denote that i has respectively the goal and intention that p holds. A
group G has mutual belief (MB G p) about p if everyone believes p, i.e. (EG p),
and if everyone believes that everyone mutually believes p. (MG x y p) denotes
two agents x and y have a mutual goal p and this holds if they mutually believe
that p is a goal of both agents. (PGOAL x p q) denotes that an agent x has a
persistent goal to achieve p relative to q: it persists in having the goal to achieve
p until it believes that p is true, or is impossible or irrevelant by q being false.
An intention (INTEND) is a persistent goal in which the agent is committed
to performing an action believing throughout that it is doing the action [2].
The expression (PWAG x y p q) states that an agent x has a persistent weak

22 S. Paurobally and M. Wooldridge

achievement goal (PWAG) with respect to agent y to achieve p relative to q.
(PWAG x y p q) is defined as a disjunction of the following conditions 1) agent
x does not believe p and has a persistent goal to achieve p, 2) if agent x believes
that p holds or that p is impossible or that q is false, then x has the persistent
goal to bring about the corresponding mutual belief with y [7].

(JPG x y p q) denote that two agents x and y have a joint persistent goal
(JPG) p with respect to q and the JPG holds if: 1) there is mutual belief that p
is not currently true, 2) it is a mutual goal to bring about p, 3) p will remain a
weak mutual goal until there is a mutual belief that p is either true, p will never
be true, or q is false. Mutual belief in each other’s PWAG towards the other
agent establishes JPG between two agents if one PWAG is relative to the other
[2]. Joint intention (JI) between two agents is defined as a joint persistent goal
to perform an action believing throughout that the agents are jointly doing the
action. We denote the JI between the members of a group G to achieve λ with
respect to q as (JI G λ q) through group PWAG defined in [8]. In table 1, we
summarise the abbreviations that we use in the rest of this paper.

3 Logic of J CA

Joint actions are actions involving a number of agents performing interdependent
actions to achieve some common intention or goal (for example two or more
people dancing together, driving together in a convoy or as in this paper taking
part in a conversation) [13]. If an agent is involved in a joint action, then it
has a part of the overall action to perform, and it must know when and how to
perform its part. The agents in a group are collectively committed to performing
the joint action until the goal of the joint action has been achieved. This is the
teamwork formalised by the joint intention theory.

Many joint actions involve communication before and during the action execu-
tion. For example, agent x may request agent y that they carry a table together
or perform negotiations together in an electronic transaction. Normally, a group
of agents engage in a dialogue to reach an agreement to carry out a joint action
together after the dialogue. We consider the act of participating in a dialogue
between two or more agents as a joint action. More specifically, we call actions
that involves communication as joint communicative actions (JCAs). This pa-
per specifies the logic and properties of JCAs and, in this section, we specify the
logic for JCA, LJCA.

3.1 Syntax of LJCA

The syntax of LJCA is based on the syntax of the JI theory (see section 2),
consisting of dynamic logic connectives, and temporal and epistemic modalities.
We refer to dynamic logic programs as processes in this paper. A process can be
an atomic process � or a complex process, γ. A complex process can itself be
defined as sequential, alternative, iterative and test, as per the normal proposi-
tional dynamic logic (PDL) syntax [6]. In addition, in LJCA, a process can be a
joint communicative act (JCA) denoted as J CA(G.γ)

Joint Conversation Specification and Compliance 23

PDL Processes: γ ::= � | γ1; γ2 | γ1 ∪ γ2 | γ∗ | A? | null | abort
LJCA processes: γ ::= i.γ | J CA((s ,H).�)|J CA(G.γ)

The complex process (γ1; γ2) denotes executing the sub-process γ1 followed by
γ2, the process (γ1 ∪ γ2) is either γ1 or γ2 non-deterministically, γ∗ denotes
zero or more iterations of process γ. A state test operator “?” allows sequential
composition to follow only if the tested state holds. A null process represents no
execution, while an abort process results in a failed state.

We extend the program logic of dynamic logic to include processes of type i.γ,
where agent i executes process γ. For example, i executing a bid CA is denoted
as i .bid , and j performing a negotiation process is denoted as j .negotiation. We
define the dynamic logic process J CA((s ,H).�) as an atomic JCA between a
speaker s and one or more hearers H, by indicating the atomic action � is in
the context of a conversation.

J CA((s ,H).�) is the sending of the CA, �, from the speaker s to hearer
H, or the execution of an atomic action by s, both within the context of a joint
conversation. A CA such as a KQML performative or a FIPA ACL CA is not an
atomic JCA action. In the expression (J CA((s ,H).�)), the CA is �. Thus a CA
such as request, inform or offer has their associated belief intention semantics.
In addition, we formulate the beliefs and intention that hold with each utterance
of a CA in the context of a conversation, independent of the semantics of the
particular CA.

More specifically, a sender has a number of intentions: his intention to convey
the meaning of the CA, his illocutionary intention to send the message through
and his perlocutionary intention for the hearer to believe or act in some way.
Mutually accepted conventions such as a shared ACL and IP make it unnecessary
for the sender to explicitly convey all these intentions for each CA. Similarly our
definition of JCAs include a number of intentions that are regarded as mutually
accepted conventions for agent conversations. For example, in our theory for
JCAs, it is no longer enough for a hearer to believe that the sender intended the
hearer to believe or do something. We also require that any actions are performed
within the context of a joint conversation. Thus a sender sends a CA because in
addition, he believes that there is a joint intention between the sender and the
hearer for the sender to make such an utterance. The hearer expects the sender
to send the CA. The sender may be responding to any previous utterance from
the hearer according to both agent’s beliefs about the IP.

An example atomic JCA is J CA((auctioneer , bidder).accept), where an auc-
tioneer sends an accept CA to a bidder. This is in the context of a joint con-
versation, where there should be a joint intention between the two agents for
the auctioneer to send the CA accept to the bidder. This would probably be
during an auction, where the auctioneer is replying to a bid from the bidder.
Thus the bidder expects the auctioneer to send accept , and on receiving the CA,
the bidder changes his beliefs accordingly.

The complex process J CA(G.γ) generalises the above atomic JCA,
J CA((s ,H).�), to apply to a group G performing a joint conversation γ. Here

24 S. Paurobally and M. Wooldridge

γ could be a single CA, such as in J CA({auctioneer , bidder}.bidder .bid). The
process γ could also represent a whole English auction protocol, for example:

J CA({auctioneer , bidder1, . . . , biddern}.
(auctioneer .post ; (bidderi .bid ; auctioneer .request higher bid)∗;
bidderj .bid ; (auctioneer .(accept |withdraw)))).

The semantics of J CA(G.γ) ensures that there is JI between G throughout the
conversation to perform the allowable sequences in the IP.

Alternatively, J CA(G.γ) could represent part of a protocol, for example:

J CA({auctioneer , bidder1, bidder2, bidder3}.
((bidderi .bid ; auctioneer .request higher bid)∗)),

where only the bidding part of the English auction is represented. The JI between
the auctioneer and the bidders still hold since they still need to commit to
perform the sub-protocol as a team, and this is ensured by the semantics of a
JCA.

3.2 Semantics of LJCA

The logic LJCA can be given a formal possible worlds semantics using an ex-
tended multi-relational Kripke model. We extend Cohen and Levesque’s model
theory for JI [2]. Thus, we assume a set of possible worlds W each one consist-
ing of a sequence of events, temporally extended infinitely in past and future. A
model for LJCA is a structure:

M = (W ,E ,T ,Rγ ,V ,RBi ,RGi). W is a non-empty set of worlds. The function
V is an assignment from sets of possible worlds to propositions. E is a set of
primitive event types. T ⊆ [Z → E] is a set of possible courses of events (or
worlds) specified as a function from the integers to elements of E . The world is
populated by a non-empty set of agents and a group of agents is a non-empty
subset of the world population. In the model, i denotes an agent in the rela-
tions for modalites expressing mental states. Rγ , RBi and RGi are accessibility
relations on the worlds in W (in order to model processes, beliefs and goals
respectively). The relation RBi is serial, transitive, and Euclidean and RGi is
serial. Bip denotes agent i believes proposition p. Gip denotes that i has goal
p. The semantics of intention Iip is given in [2] in terms of the persistent goal
of i to intentionally perform an event that will bring about p.

Iip
def= (PGOAL i ∃e(DONE i [(Bi ∃e ′(HAPPENS i e ′; p?)) ∧

¬(GOAL i¬(HAPPENS i e; p?))]?; e; p?))

Complex processes are generated from the set of atomic processes, and the
semantics of the standard dynamic logic processes can be found in [6]. The
formula [γ]A has the intended meaning: A holds after executing process γ.

Let the formula (AGENT i γ) denote that only the agent i can do action γ
[2]. i .γ denotes the action expression i .γ is occurring now at the current time
point. The following is a definition of i .γ using the dynamic logic “[]” operator.

Joint Conversation Specification and Compliance 25

M ,w |= [i .γ]p iff ∀w ′ ∈ W (wRi.γw ′ ∧ (AGENT i γ) → M ,w ′ |= p)

The semantics of J CA((s ,H).�) and J CA(G.γ) are given below. We have
different formulations for atomic and complex JCAs because we can declare the
sender s and hearer H of an atomic JCA, as (s ,H), and the associated CA as �.
However for a complex JCA, J CA(G.γ), we refer in terms of a group of agents
G involved in carrying out the process γ, which could itself be a JCA.

The fixed point definition of the atomic JCA from sender s to hearer(s) H
with the CA � presupposes the following:

– There is JI between s and H to do the JCA, unless the conversation is
aborted or over. λ=JI s H J CA((s ,H).�) (MB s H ¬abort |¬(DONE s.�))

– It is mutual belief between s and H that H intends s to do
�. δ = MB s H (IH (DONE s .�)). Further mutual belief between s and H
that H intends s to do the JCA is captured by the JI in λ.

– s intends that having sent the CA, �, H believes that s both intended the
JCA and has done the atomic JCA.
μ = Is((DONE s.�) → BH ((DONE s .J CA((s ,H).�))

∧ Is(DONE J CA((s ,H).�))))

Given the success of these beliefs and intentions, s does send the CAs �, given
by s .� at the end of the definition of an atomic JCA.

For atomic JCA: J CA((s ,H).�) def= (λ ∧ δ ∧ μ)?; s .�

The semantics of a complex JCA, β = J CA(G.(s .�; γ)), first states that
there is a JI in G to carry out (s .�; γ) as a JCA with respect to q (see table 1).
Here q gives the conditions for stopping a conversation by q being false. q is
defined in table 1 and the conditions are that 1) it is mutual belief in the group
that not all the actions in the JCA, β, have been executed, or 2) it is mutual belief
that the conversation has not been aborted. We include timeouts in aborted
conversations. We define a complex JCA to consist of the following processes
(successful testing of the conditions), where β = J CA(G.(s .�; γ)):

– There is a JI in G to carry out (s .�; γ) as a JCA with respect to q.
θ = (JI G (DONE G.β)? q).

– Executing the atomic JCA with CA �. α = J CA((s ,G ′).�),
where G ′ = G\{s}

– Given that the atomic JCA α has been performed, ensuring that there is a
joint intention to do the rest of the complex JCA.
ν = JI G((DONE α)?; J CA(G.γ)) q

– Doing the rest of the JCA, μ = J CA(G.γ)

Thus a complex JCA is defined as J CA(G.(s .�; γ)) def= (θ?; α; ν?; μ).

Our definition of a complex JCA, β, requires that the joint intention to per-
form β persists throughout the conversation, taking into account the point at
which the conversation has reached. In this way, our definition captures the
persistency required in following an interaction protocol.

26 S. Paurobally and M. Wooldridge

3.3 Axiomatisation of LJCA

Both atomic and complex JCAs are perlocutionary acts that produce an effect
on the addressee’s side, where the sender intends the receiver to react, believe
or do something, according to its utterance. In this section, we formulate ax-
ioms to express the effect of performing a JCA on the mental states of group
participants. We use the notation summarised in table 1 in specifying the ax-
ioms in this section. Recall that an atomic JCA with CA, �, is denoted by
α = J CA((s ,H).�), and a complex JCA is denoted by β = J CA(G.γ). Let
G = {s ,H }.

Axiom 1 states that the CA associated with a JCA is also performed when
the JCA is carried out. This axiom holds because in the semantics of atomic
JCA, the process s .� is carried out when s possesses the correct intentions.

Axiom 1. (DONE α) → (DONE s.�)

Axiom 2 states that in an intended JCA, the sender s also intends its associated
CA. Axiom 2 can be derived from axiom 1 and the side-effect of intentions.

Axiom 2. Is(DONE α) → Is(DONE s.�)

Axiom 3 states that sending a CA implies that it is mutual belief between the
sender and the hearer that the sender intended the associated JCA. The axiom
can be proved from an atomic JCA’s semantics and from Bel-Int Axiom.

Axiom 3. EG(DONE s.�) → (MB s H Is(DONE s.α))

Axiom 4 states that in a conversation the group mutually believes that it intends
to carry out the conversation. This axiom can be obtained from the semantics
of a complex JCA (since carrying out a complex process involves joint intention
in G), and from Bel-Int Axiom (see table 1).

Axiom 4. (OCCURRING G.β) → (MB G IG (DONE G.β))

Axiom 5 formulates a hearer’s H beliefs on receiving a JCA. The hearer believes
that the sender s intended H to believe that s intended the JCA before actually
sending the CA associated with the JCA. Axiom 5 can be derived from axiom 3
where the intentions of the sender are mutually believed in a group.

Axiom 5. BH (DONE s.α) → BH IsBH ([(Is(DONE α))?; α](DONE s.�))

Axiom 6 states that after a conversation, everyone believes that everyone in-
tended to do the interaction before actually doing it, and everyone believes that
everyone intended for everyone to believe their intentions. This axiom follows
from generalising axiom 5 and from the JI in the definition of a JCA.

Axiom 6. EG(DONE G.β) →
(EG(BEFORE (DONE G.β) (IG(DONE β))) ∧ (JI G β q))

Axiom 7 states that the receiver of a JCA believes that he has also received the
associated CA. This axiom is inferred from axiom 5.

Joint Conversation Specification and Compliance 27

Axiom 7. BH (DONE α) → BH (DONE s.�)

Axiom 8 states that it is mutual belief in G that everyone in G must perform
the JCA β together as a joint intention. Thus, if everyone believes that everyone
intends to perform a conversation, then the joint intention of this JCA is mutual
belief within the group. This axiom is entailed from the semantics of JCA and
that JI entails mutual belief about the group’s intentions.

Axiom 8. EGIG(DONE G.β) → MB G (JI G G.β q)

Axioms 1, 2 and 7 can also be modified to reflect the sender’s and hearers’
intentions and beliefs for complex JCAs β.

4 A Framework in LJCA for Joint Conversations

In this section, we use the LJCA logic to develop a framework for joint con-
versations between a group of agents according to an IP. We first express the
assumptions for shared conventions, then we provide an example for forming a
group of interacting agents, and finally we specify two notions of compliance to
the rules of a joint conversation.

4.1 Assumptions

We make the following assumptions about the representation of an interaction
protocol and the sharing of the interaction protocol and its semantics within the
group.

Assumption 1. A group G participating in a joint conversation has prior mutual
knowledge about the shared ACL and its semantics. Let a theory for the ACL
shared between G with CAs γ′ be denoted by Δ(G, γ′), then assumption 1 is given
as ((OCCURRING JCA(G.γ)) ∧ (Δ(G, γ′) → Δ(G, γ))) → (CGΔ(G, γ′)).

Assumption 1 expresses that the chosen ACL and the semantics of its CAs
is mutual knowledge within the interacting group. What an agent says by its
utterance (locutionary understanding) and what is meant by that utterance
(illocutionary understanding) are mutual knowledge after an agent’s utterance.

Assumption 2. Possible paths of actions can be inferred from an interaction
protocol. An interaction protocol can imply a JCA complex process, with the
possible paths as its sub-processes. The constituent actions are labelled with the
perpetrator of that action. J CA(G.γ) represents the sequences of actions in the
IP using the sequential and alternation PDL program operators. Let a theory of
the interaction protocol be denoted as Π(G, γ′) where G is the group of agents fol-
lowing the IP and γ′ represents all the paths of actions derivable from the the IP.
Assumption 2 is formulated as (Π(G, γ′)∧[γ]p) → (∃i ∈ G, (<G.J CA(i .γi)> p))
where γ = γ1; . . . γi ; . . . γn , and [γ]p ↔ ¬ <¬γ> p.

28 S. Paurobally and M. Wooldridge

Assumption 2 states that we can represent an interaction protocol in PDL as
possible sequences of actions. In addition, for each action in the IP, the IP
specifies which agent does that action. For example, in an auction, one possible
sequential path is (auctioneer .post ; bidder1 .bid ; auctioneer .call bid ; bidder2 .bid ;
auctioneer .accept ; auctioneer .close).

Assumption 3. A group of agents uses an interaction protocol to carry out a
conversation. The IP, Π(G, γ′), and its semantics are common knowledge within
the group.

((Π(G, γ′) → (DONE J CA(G.γ))) ∧ IG(DONE J CA(G.γ))) → CGΠ(G, γ′)

Assumption 3 states that all interacting agents know which IP is being used
during the conversation. Thus assumptions 2 and 3 results in all the agents
knowing the permissible actions and their perpetrators in a conversation.

Assumption 4. An agent knows if it is a member of G and knows its role in the
conversation.

J CA(G.γ) → (∀i ∈ G(Ki((i ∈ G)∧Ii (DONE i .γi)))) where γ = γ1; . . . γi ; . . . γn

We assume an agent’s awareness of its membership in a group and its role ac-
cording to that IP. We show how this can be achieved in section 4.2.

Assumption 5. Each agent in G has individual goals and intentions, and mu-
tually believe so about the other agents too.

∀i ∈ G ∃γ, μ((PGOAL i (DONE i .γ) q) ∧ Ii (DONE μ)
∧ MB G ((PGOAL i (DONE γ) q) ∧ Ii (DONE μ)))

It is also mutual belief in G that for each agent to achieve its individual goals,
it has to participate in the conversation.

∀i ∈ G((PGOAL i (DONE i .μ) q) ∧ IG (DONE J CA(G.γ)) →
(MB G (DONE J CA(G.γ)) → (DONE μ)))

Assumption 5 expresses that an agent is intensional – it believes it can achieve
its individual goals by intending to participate and participating in the joint
conversation. Thus, agents are rational and participate in a joint conversation
for individual goal satisfaction.

4.2 Example Group Formation

A group of agents is formed because its members choose to collaborate in a
dialogue or a joint action, leading to the satisfaction of the member’s own indi-
vidual goals. Here, we focus on one to many IPs because they encode the ideas
of group interaction such as the contract net protocol or auctions. One to many
protocols, where only one member can perform a one-to-many interaction, can
be simplified to the bilateral case or extended to many-to-many protocols. We
use an English auction as an example. Before the group is formed, an auctioneer

Joint Conversation Specification and Compliance 29

has a goal (DONE λ) to be achieved through group collaboration. He also has
a goal (DONE γ) for a conversation with other agents such that they can coor-
dinate to achieve λ after the conversation. Thus, γ, as the JCA, is the process
of conversing and λ is what is agreed to be performed after the dialogue. The
auctioneer wants to first form a group to carry out γ, the joint conversation.
Here, as an example of group formation, the auctioneer sends a call for partici-
pation with the goal to engage in a joint conversation followed by an acceptance
or refusal from the receivers. Let (c f participation a r γ q) denote a call for
participation from auctioneer a to receivers r for achieving the goal (DONE γ)
relative to q. Let the group of agents that include only a and r be denoted by
Ga . Let cfp denote the action of sending the cfp CA, whose formal semantics
can be found in [5]. Note that γ is a JCA and is of type J CA(G.β).

The semantics of the c f participation with the cfp CA is given in LJCA as:

(c f participation a r γ q) � (Ba¬γ)?; Ia ((DONE γ) ∧ (JI Ga Ga .γ q) ∧
BGa Ia((DONE Ga .γ) ∧ (JI Ga Ga .γ q)))?; cfp

We define the semantics of c f participation as a intends to achieve the JCA γ
and for Ga to adopt this as a joint intention. a also intends for Ga to believe these
intentions. On receiving a c f participation, an agent r (r ∈ Ga) may choose to
respond with an acceptance or a refusal to be a member of the group to perform
JCA γ. The semantics of (accept r a γ q) with the accept CA is:

Ir ((DONE γ) ∧ (BMB r s (PWAG r a (DONE γ) q)))?; accept

If r refuse, then all commitments are discharged and r is not a member of the
group involved in the joint conversation. If r accepts, then r is integrated in the
group and participates in the joint conversation. Let G ′ be re-initialised to the
group containing only a. Theorem 1 states that: if r accepts a call for participation
from a followed by r being added to the group G (the sequence of actions in the
premise of theorem 1), then there is a JPG in G to carry out the JCA γ.

Theorem 1. |= (DONE [((c f participation a r γ q); (accept r a γ q))?])
→ (JPG G (DONE G.γ) q), where G := (G ′ ∪ {r}).

Proof. Assume that an acceptance follows the call for participation without
any inteferring intermediary action and that it is mutual belief that messages
are not lost. From the semantics of c f participation, agent a on sending a
c f participation has the intention for a JI to be adopted by the group. Since, r
sends an accept, then it must have received the c f participation and thus believes
(DONE a.c f participation) and from axiom 5, Br Ia((DONE γ)∧(JI G G.γ q)∧
BGIa ((DONE G.γ) ∧ (JI G G.γ q))), more specifically Br Ia(JI G G.γ q). On
receiving an accept, again from axiom 5:

Ba IrBMB r a(PWAG r a(DONE γ)q) ∧ BaBr Ia(JI G G.γ q). More
specifically, BaIrBMB r a (JPG r a (DONE γ) q) from the definition of
JPG as mutual belief in each other’s PWAG. From axiom Bel-Int, we have
(JPG {r , a} (DONE G.γ) q). Each receiver that sends an accept shares the
same mutual beliefs with a, and thus we have (JPG G (DONE G.γ) q).

30 S. Paurobally and M. Wooldridge

4.3 Compliance in a Joint Conversation

To conduct a coherent conversation, all members of a group must adhere to
the requirements for a joint conversation and this is for each member’s benefit
in achieving their own goal. During a joint conversation, a group’s compliance
to the IP and the rules of interaction is dependent on the members’ joint in-
tention to uphold the joint conversation and its rules. An initial indication of
this intention for compliance is the acceptance to a call for participation. In
addition, throughout the joint conversation, there has to be mutual belief and
intention within the group of each member’s joint intention to comply to the
rules of the interaction. To this end, we define below two notions of compliance
– standard and strong compliance. First we define standard compliance in a joint
conversation, which stands as the minimum requirements for conducting a joint
conversation. We assume that each member in the group G believes that it is a
member of G and this is mutual belief in G.

Standard Compliance

Definition 1. Group members intentionally show standard compliance to the
rules governing a joint conversation, according to protocol Π(G, γ′) and the
J CA(G.γ) conversation, if the following conditions hold:

(STD1) All the members in G have a joint intention to uphold the joint con-
versation by jointly intending J CA(G.γ)) and this is mutual belief in G.

(STD2) i jointly intends with G the sequences of actions derivable from
Π(G, γ′).

(STD3) If the IP specifies that i has to perform CAi , then i both individually
and jointly intends to perform J CAi , where (J CAi → CAi).

(STD4) If J CA(G.γ) triggers the end state λ, that is [J CA(G.γ)]λ, then it
is the joint intention of the group to achieve (λ?).

(STD5) Each member jointly intends to achieve its share of J CA(G.γ) and
this is mutual belief.

(STD6) The members retain their joint and individual intentions until the
whole joint conversation is terminated.

In section 5, we prove that following our assumptions in section 4.1, our frame-
work ensures standard compliance.

Strong Compliance. We also define a stronger notion of compliance, called
strong compliance if the participants in a joint conversation are cooperative,
helpful and prevent violation of the compliance.

Definition 2. In a joint conversation, strong compliance by G to protocol
Π(G, γ′) and the J CA(G.γ) conversation holds, if the following conditions hold:

(M1) G shows standard compliance to performing the J CA(G.γ) process ac-
cording to the interaction protocol Π(G, γ′).

Joint Conversation Specification and Compliance 31

(M2) Members of G are cooperative in that when receiving a message, they
always reply even if they reply negatively with a refusal or a rejection.

(M3) Members of G do not violate the IP and hence do not violate compliance,
even though another participant’s or the group’s goal may be in conflict with their
own goal.

(M4) Members of G are helpful, that is if possible they help other members
comply to the rules in the joint conversation. Helpful may be defined in terms of
repeating parts of the protocol in the pursuit of everyone’s compliance.

Having developed a framework in LJCA for representing and reasoning about
joint conversations, we use this framework to define and prove properties re-
garding a member’s and a group’s mental states in a joint conversation. In so
doing, we prove that, following the assumptions in section 4.1, the members in
G exhibit standard compliance in our framework.

5 Properties of Joint Conversations

In this section, we formulate and prove relevant theorems that arise from the
LJCA logic after a group of interacting agents has been formed with the joint
intention of participating in a conversation. Theorems 3, 4 and 5 are useful for
reasoning about joint conversations because they show that each participant
believes that the other members of the group will cooperate with them in the
conversation and that cooperation indeed is the best action for them. Again, we
use the notation summarised in table 1.

Theorem 2 states that it is mutual belief in G that the group’s intention to
carry out the conversation as a JCA implies a member’s intention for the group’s
conversation to satisfy each member’s own goal.

Theorem 2. MB G (IG(DONE J CA(G.γ))) ∧ Ii(DONE γi) →
MB G (Ii(DONE J CA(G.γi))) where i ∈ G

Proof. From the definition of JCA and JI (MB G (DONE J CA(G.γ))) →
(MB(JPG G (DONE G.γ) q)). From theorem 1, (JPG G (DONE G.γ)) holds
during a conversation. Given this JPG between G, then by assumption 5, there
is mutual belief in G that each agent’s goal can be achieved in the conversation,
that is, MB G (IiDONE J CA(G.γi)).

Theorem 3 states that an agent chooses to do its part of a JCA process rather
than not performing and ignoring its part.

Theorem 3. It is mutual belief in G, that performing J CA(G.β) together re-
quires each member in G to do its part of J CA(G.β). More formally, Let predi-
cate do part(G, i , β, βi) hold if i in group G performs the JCA process βi in the
complex process β.

(MB G (IG(DONE J CA(G.β))) → (∀i ∈ G(JI i G do part(G, i , β, βi) q)))
where β = β1; . . . βi ; . . . βn

32 S. Paurobally and M. Wooldridge

Proof. Given the semantics of JCAs, the premise implies (JI G G.β q). This
pre-supposes MB G (JPG G (DONE G.β) q). From theorem 2 and assumption
5, it is mutually believed that each member i intends the conversation to achieve
the overall goal of the conversation and its own goal:

MB G Ii ((DONE J CA(G.β)) ∧
(BEFORE (DONE J CA(G.β)) Ii(DONE βi)) → Ii(DONE βi)).

The intention of the group is thus to achieve each member’s individual goal for
the conversation. From the definition of stepwise execution using JI [3], if a team
intends to do a sequence of actions, the agents of any of the steps will jointly in-
tend to do the step relative to the group’s intention. From assumption 2, the con-
versation can be represented as a stepwise execution where, from assumption 4, a
member knows which is her part. The preconditions for stepwise execution is thus
fulfilled, implying that the agents of any of the steps will jointly intend to do the
step relative to the group’s intention, that is (∀i(JI i G do part(G, i , β, βi) q)).

Theorem 4 extends theorem 3 for a JCA consisting of two CAs performed by
two different agents. Theorem 4 states that a hearer responds to a sender when
it is its turn because of their beliefs about each other’s actions in the context of
a JCA.

Theorem 4. If a group G intends the JCA β, where β stipulates that a hearer
r (in G) replies with the communicative act �r after receiving �s from agent s
(in G), then agent r both performs �r and intends the JCA associated with �r .
MB G (IG (DONE J CA((s , r).(�s ; �r)))) →

Ir J CA((r , s).�r) ∧ (HAPPENS r .�r)

Proof. From the premises, it is mutual belief that s and r believe that they jointly
intend β. On receiving �s , by axioms 2 and 3, r believes that it is mutual belief
that s believes that performing �s is part of J CA((s , r).(�s ; �r)). From theo-
rem 3, r believes the mutual belief that �s is s ’s part of J CA((s , r).(�s ; �r)).
From the premises and the definition of a JCA, r believes that it is mutual belief
that r jointly intends β with s. The process β, and from assumption 2, stipu-
lates that agent r should reply with the communicative act �r after receiving
�s . Since it is the joint intention of both agents for the sequential action to
be successful so that J CA((s , r).(�s ; �r)) succeeds, then r believes that s will
perform �s iff r will perform �r . Similarly for r, from theorem 2, r intends the
joint conversation to achieve his goal and from theorem 3, r believes that it is
mutual belief that r will perform �r as his part in a stepwise execution. Thus
r jointly intends to perform �r as his part if s jointly intends �s as her part.
Since s does indeed perform �s , then r jointly intends �r as his part and sends
�r by the definition of intention.

Theorem 5 states that each agent finds it more preferable to perform their part
of a JCA as intended while believing that this is so for the other participants
also, leading to a Nash equilibrium [10] between the agents’ actions.

Joint Conversation Specification and Compliance 33

Theorem 5. If a group G jointly intends J CA(G.γ) and, if the process γ stipu-
lates that agent r (in G) replies with the communicative act �r after receiving �s

from agent s (in G), then the actions r .�r and s.�s form a Nash equilibrium.

Proof. To prove the Nash equilibrium here, we need to prove that it is
preferable for r and s to perform their allocated parts in accordance with
each other. Actions �r and �s contribute to the achievement of the goal
(DONE J CA(G.γ)). From the fixed point definition of JCA, r and s jointly
intend (DONE J CA(G.γ)) and they jointly intend r .�r and s .�s . From ax-
iom 2, r intends �r and s intends �s with respect to the overall intention of
(DONE J CA(G..γ)). From theorem 3, it is mutually belief that both r and s
should perform their part, �r and �s respectively. In fact, by theorem 4, both r
and s do indeed choose to perform their part as the best response, with respect
the other agent performing his part.

Finally, in theorem 6, we prove that given the assumptions in section 4.1, our
framework ensures standard compliance.

Theorem 6. Given assumptions 1 to 5 in section 4.1, our framework ensures
standard compliance in the process J CA(G.γ), in the sense that the mental states
of an interacting agent in our framework will be according to the requirements
for standard compliance defined in definition 2.

Proof. To prove standard compliance, we prove that the conditions STD1 to
STD6 in definition 2 hold.

The definition of J CA(G.γ) states that G has a joint intention to carry out
J CA(G.γ), thus proving condition (STD1).

From assumption 2, J CA(G.γ) can be inferred from IP Π(G, γ′) and thus
there is a joint intention by each member to perform the possible sequences in
Π(G, γ′). This proves the condition (STD2).

Assume that it is i ’s turn to perform JCAi after receiving a CA. By applying
theorem 4 and axiom 2, i jointly intends to perform JCAi . By the theory of JI,
i also individually intends to perform JCAi . This proves conditions (STD3).

Assume (DONE J CA(G.γ)) → (DONE G.λ). To prove (STD4), we prove
(JI G G.λ q). This is provable since J CA(G.γ) implies the joint intention in
the group to achieve (DONE J CA(G.γ)) and from deconditionalization.

Theorem 3 proves (STD5), that is that each member jointly intends to perform
its share of J CA(G.γ) and this is mutual belief. Condition (STD6) requires that
the group members retain their joint and individual intentions throughout the
joint conversation. This is proved since we use JI theory which incorporates
persistency in achieving goals. Thus, because the joint conversation is a joint
persistent goal within the group, then the group members exhibits persistency
in achieving the goal, which is to carry out the conversation. Furthermore, by
theorem 2, they persist in achieving their own goals which is achievable through
the joint conversation.

34 S. Paurobally and M. Wooldridge

6 Related Work

The work in this paper formulates and analyses the mental states of the agents
in an interacting group when they are involved in a joint conversation. There
has been past work in the domain of natural language and sociology regarding
joint actions and commitments in a group [15].

However in the multi-agent systems domain, it is relatively new in the ACL
and IP semantics area to specify and focus on the joint intentions of an interact-
ing group. Kumar et al. 2002 [7] associates semantics to conversation protocols
using the JI theory. Their approach is to formulate the beliefs and goals holding
after a CA, derived from the semantics of that CA. They remain at the level
of what is believed after executing a couple of CAs from the CAs semantics,
without delving into the implications of those beliefs on the joint actions of the
agents as members of a group. Likewise, kumar et al. 2000 [8] generalise the JI
semantics of CAs to apply to groups of agents, but only at the relatively syn-
tactic level of including a group parameter instead of single agents in the CAs.
Deriving the semantics of conversations from the semantics of its constituent
CAs, as in [7], is not sufficient as discussed in section 1. Thus, their approach
lacks the the notion of persistency throughout a joint conversation and they do
not investigate compliance to a conversation policy.

Paurobally et al. [12] uses FIPA-like semantics to specify a formal framework
for the semantics of agent interactions - ACLs and IPs - but here again only what
is believed after executing each CA is analysed. An interactive group’s goals to
carry out the joint conversation is not investigated. Compliance and persistency
in compliance to an interaction protocol are also lacking.

Tuomela [15] investigates joint actions and commitments in communication,
but they focus on CAs and do not investigate conversations in detail. Elio and
Haddadi [4] propose dialogs for joint tasks that jointly maintain global coherence
in a conversation, but there is no concrete specification to their approach.

7 Conclusions

A conversation between a group of agents involves more than simply the ex-
change of CAs from a sequence dictated by an interaction protocol. When an
agent engages with a group in a conversation, there is a joint commitment on
that agent’s part towards the group to comply and uphold the rules governing
the conversation, and to do its share of the conversation when required. Current
MAS research in the semantics of conversation policies lacks well defined seman-
tics for such group conversations to show the joint mental states that arise and to
enforce compliance to the rules of interaction. To remedy this, we specify a con-
versation as a joint communicative action between a group of interacting agents
and we propose the logic of JCA, LJCA, and a framework in LJCA to specify the
concepts of joint conversations. We formulate and prove the properties of such
joint conversations, including an agent’s compliance in a joint conversation.

Joint Conversation Specification and Compliance 35

As future work, we are looking into the decomposition and integration of diffe-
rent interaction protocols, and how this affects the notions of joint conversations
and compliance.

References

1. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multi-
agent Software Systems. Agent-Oriented Software Engineering, 91–104 (2000)

2. Cohen, P., Levesque, H.: Intention is choice with commitment. AI 42(3), 213–261
(1990)

3. Cohen, P., Levesque, H.: Teamwork. Nous 25(4), 487–512 (1991)
4. Elio, R., Haddadi, A.: On abstract task models and conversation policies. In: Proc.

of the Agents 1999 Work on Specifying and Implementing Conversation Policies
(1999)

5. FIPA. FIPA Communicative Act Library Specification. Foundation for Intelligent
Physical Agents (2002), http://www.fipa.org

6. Goldblatt, R.: Logics of Time and Computation. CSLI, Stanford (1987)
7. Kumar, S., Huber, M., Cohen, P., McGee, D.: Toward a formalism for conversation

protocols using joint intention theory. Computational Intelligence 18(2), 174–228
(2002)

8. Kumar, S., Huber, M.J., McGee, D., Cohen, P.R., Levesque, H.J.: Semantics of
agent communication languages for group interaction. In: AAAI/IAAI, pp. 42–47
(2000)

9. Meyer, J.J., Van Der Hoek, W.: Epistemic Logic for AI and Comp. Science. Cam-
bridge Univ. Press, Cambridge (1995)

10. Nash, J.: Two-person cooperative games. Econometrica 21, 128–140 (1953)
11. Nowostawski, M., Purvis, M., Cranefield, S.: A layered approach for modelling

agent conversations. In: Proc. 2nd Int. Work. on Infrastructure for Agents, MAS,
and Scalable MAS (2001)

12. Paurobally, S., Cunningham, R., Jennings, N.R.: A formal framework for agent
interaction semantics. In: Proc. AAMAS, pp. 91–98 (2005)

13. Sandu, G., Tuomela, R.: Joint action and group action made precise. Synthese 105,
319–345 (1996)

14. Smith, I., Cohen, P., Bradshaw, J.: Designing conversation policies using joint
intention theory. In: ICMAS, pp. 269–276 (1998)

15. Tuomela, R.: Collective goals and communicative action. Journal of Philosophical
Research 27, 29–64 (2002)

16. Wooldridge, M.: Semantic issues in the verification of agent communication lan-
guages. Journal of Autonomous Agents and MAS 3(1), 9–31 (2000)

17. Yolum, P., Singh, M.: Flexible protocol specification and execution: Applying event
calculus planning using commitments. In: Proc. AAMAS, pp. 527–534 (2002)

http://www.fipa.org

Interoperation in Protocol Enactment

Amit K. Chopra and Munindar P. Singh

North Carolina State University
{akchopra,singh}@ncsu.edu

Abstract. Interoperability has been broadly conceptualized as the ability of
agents to work together. In open systems, the interoperability of agents is an
important concern. A common way of achieving interoperability is by requir-
ing agents to follow prescribed protocols in their interactions with others. In
existing systems, agents must follow any protocol to the letter; in other words,
they should exchange messages exactly as prescribed by the protocol. This is an
overly restrictive constraint; it results in rigid, fragile implementations and curbs
the autonomy of agents. For example, a customer agent may send a reminder to
a merchant agent to deliver the promised goods. However, if reminders are not
supported explicitly in the protocol they are enacting, then the reminder would
be considered illegal and the transaction may potentially fail. This paper studies
the interoperation of agents, dealing with their autonomy and heterogeneity in
computational terms.

1 Introduction

Protocols describe the interactions among autonomous agents. Thus they are crucial
to the design and construction of multiagent systems. Previous work on protocols in
multiagent systems has dealt with high-level topics such as semantics [8,18], compo-
sition [17], and verification [13]. However, protocols are enacted by agents in physical
systems. In particular, considerations of the underlying communication models and how
distributed agents are able to make compatible choices would greatly affect whether a
protocol may in fact be enacted successfully. The objective of this paper is to study
the computational underpinnings of protocol enactment in multiagent systems. It seeks
to characterize the operationalization of agents so as to determine whether and when
agents may be interoperable.

The agents we consider are set in open systems, and they interact with each other
based on (typically, published) protocols. An agent may, however, deviate from the
protocol because of its internal policies. Such deviations pose certain problems: (1) the
agent might no longer be conformant with the protocol, and (2) the agent may no longer
be able to interoperate with other agents.

For an agent to be compliant with a protocol, first and foremost it must be confor-
mant with the protocol. Whereas agent compliance can only be checked by monitoring
the messages an agent exchanges with its peers at runtime, conformance can be verified
from the agent’s design. An agent’s design is conformant with a protocol if it respects
the semantics of the protocol; a useful semantics is obtained when considering the satis-
faction of commitments [12]. The distinction between conformance and compliance is

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 36–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interoperation in Protocol Enactment 37

important: an agent’s design may conform, but its behavior may not comply. This may
be because an agent’s design may preclude successful interoperation with its peers.
In other words, even though an agent is individually conformant, it may not be able to
generate compliant computations because of the other agents with whom it interacts, ap-
parently according to the same protocol. Interoperability is distinct from conformance;
interoperability is strictly with respect to other agents, whereas conformance is with
respect to a protocol.

Protocols provide a way of structuring interactions; however, interoperability is not
just a test on agents that adopt roles in the same protocol, and then deviate from their
roles. Interoperability is a property of a set of agents. The proposed definition of inter-
operability declares two agents to be interoperable provided from each joint state that
they can enter, they can reach a final state. The essential idea is of determining the states
that can be entered. In our approach, these are specified based upon the highly realis-
tic constraint that only messages that have been sent (by an agent) can be received (by
another agent). Based on this constraint, some transitions cannot in fact be performed:
these transitions correspond to an agent receiving a message before the message has
been sent. The transitions that can be performed are termed causally enabled.

A communication model sets the physical environment for communication between
agents. The parameters of this model include whether communication is synchronous
or asynchronous, the number of channels to use, the size of the buffers, and the buffer
access mechanism. One cannot simply examine a pair of agents in isolation and decide
whether they are interoperable; the agents must be analyzed in light of the communica-
tion model in force. Agents that are interoperable in one model may be noninteropera-
ble in another. To analyze interoperability, we capture communication models in terms
of causal enablement. Causal enablement is a basic building block that identifies the
possible nonblocking actions given the current global state of the interaction. Different
models of causal enablement correspond to different communication models.

Our contribution in this work is that we present a formal test for interoperability of
agents. The rest of the paper is organized as follows. Section 2 presents agents as tran-
sition systems. Section 3 formalizes a test for the interoperability of agents. Section 4
concludes with a discussion of the relevant literature.

2 Agents

We represent agents as transition systems. Informally, a transition system is a graph
with states as vertices and actions as edges. A state s is labeled with the propositions
that hold in that state; a transition is a triple 〈s, e, s′〉 where s and s′ are states, and the
edge e is labeled with the actions that occur in the transition. In addition, the initial and
final states are marked. Further, the initial state has no incoming transitions.

Definition 1. A transition system is a tuple 〈σfl, σact, η, S, s0, F, ρ, δ〉 where

– σfl is a finite set of propositions
– σact is a finite set of actions
– η : σact �→ σfl is a bijective function
– S is a finite set of states

38 A.K. Chopra and M.P. Singh

– s0 ∈ S is the initial state
– F ⊆ S is the set of final states
– ρ : S �→ P(σfl) is an injective labeling function with the requirement that ρ(s0) =

{}
– δ ⊆ S × E × S is the set of transitions where E ⊆ P(σact) such that

• ∀s ∈ S : 〈s, ε, s〉 ∈ δ where ε is the empty set of actions
• ∀s, s′ ∈ S : 〈s, ε, s′〉 ∈ δ ⇒ s = s′

• 〈s, {a0, a1, . . . , an}, s′〉 ∈ δ ⇒ ρ(s′) = ρ(s) ∪
⋃n

i=0 η(ai)

The following description explains the elements of Definition 1. The empty set of ac-
tions ε corresponds to inaction. For each state s, the set of transitions δ contains the
transition 〈s, ε, s〉 to capture the transition where no action happens. Further, as would
be expected, inaction cannot cause a transition in a new state. To capture the occurrence
of any action a in the transition, the resulting state is labeled with a unique proposi-
tion η(a) corresponding to the action. We restrict the transition systems such that the
only cycles allowed are those because of inaction. This restriction is placed because η
returns the same proposition no matter how many times an action happens, and thus is
insufficient to model repeated actions. The propositions a state is labeled with serve as
a history of all the actions that have occurred previously.

Fig. 1. A customer agent

Table 1. States in Figure 1

State Fluents
s0 {}
s1 req
s2 req, offer
s3 req,offer,accept
s4 req, offer, accept , goods
s5 req, offer, accept , pay
s6 req, offer,accept , goods, pay
s7 req, offer,reject
s8 req, none

We model two types of actions in agents: sends and receives. Let p be a message. A
send is indicated by !p, whereas a receive is indicated by a ?p. The sender and receiver
of the message are implicit as the agents under consideration can interact only with one
agent at a time. Figure 1 shows the transition system of a customer agent. State s0 is the
start state of this agent; the final states are indicated by concentric circles—in this case
they are s6, s7, and s8. This agent can interact with a merchant agent to buy goods. The
customer’s interactions are described below. Further, we assume that the names of the
messages that can be sent by any agent are disjoint from those that any other agent can
send.

1. The customer starts the interaction by sending a request for quotes to the merchant.
2. The merchant can respond either by sending an offer, or by indicating that there are

no offers in which case the customer terminates.

Interoperation in Protocol Enactment 39

3. If the merchant sends an offer, the customer can respond to the offer by either
sending an accept, or a reject in which case, the customer terminates.

4. After the customer accepts, either the customer may send payment or the merchant
may send goods.

5. If the merchant sends goods then the customer sends payment; if the customer
sends payment, then the merchant sends goods. In either case, after the exchange
the customer terminates.

Table 1 shows the labels of states in the transition system.

3 Interoperability

This section formalizes interoperability, and provides a computational method of veri-
fying the interoperability of two agents.

Interoperability depends crucially on the communication model in force. Communi-
cation models may differ along the following dimensions.

Synchrony: The communication mode is synchronous if an agent can send a message
only when another is ready is receive it; equivalently, the send of each message
coincides with its receipt. The result is that the agents execute in lock-step fash-
ion. The mode is asynchronous if an agent can send a message regardless of the
recipient’s availability. The mode of communication has important implications for
buffer design, as we shall see.

Channels: Channels represent the logical communication medium between agents
along which messages are exchanged. A channel can be unidirectional or bidirec-
tional. If it is unidirectional, then it is modeled with a single buffer; if it is bidirec-
tional, then it is modeled with two buffers, one for each direction. A unidirectional
channel has two endpoints: one for the sending agent, and another for the receiving
agent. A bidirectional channel has four endpoints: two for each agent—one to send,
another to receive. Further, the number of channels may vary. For instance, all mes-
sages can be exchanged along a single channel, or each message can be exchanged
along its own channel. More channels allows for greater concurrency.

Buffers: Synchronous communication corresponds to zero-length buffers, whereas
asynchronous communication implies nonzero-length buffers. Further, in the
asynchro-nous model buffers may be finite-length or unbounded. Buffers may also
differ in how they are accessed. A buffer may be modeled as a FIFO queue, in
which case messages are appended to the end of a queue when doing a send, and
read from its head when doing a receive. Alternatively, buffers may be modeled
as random access memory (RAM), in which case sent messages can be inserted
into and read from any location. The sizes of buffers impacts the ways in which an
agents can block. If the buffers are unbounded, an attempt to send always succeeds
whereas if they are of finite length, then even an attempt to send may block. An at-
tempt to receive, on other hand, may block regardless of buffer size—for an agent
to receive a message, another agent must have sent it first.

The proposed definition of interoperability declares two agents to be interoperable
provided from each joint state (in the product) that they can enter, they can reach a

40 A.K. Chopra and M.P. Singh

final state. The essential idea is of determining the states that can be entered. In our ap-
proach, these are specified based upon the highly realistic constraint that only messages
that have been sent (by an agent) can be received (by another agent). Based on this
constraint, some transitions cannot in fact be performed: these transitions correspond
to an agent receiving a message before the message has been sent. The transitions that
can be performed are termed causally enabled. Further, for progress to take place, our
definition assumes that if an enabled transition is available then that or another enabled
transition is taken.

Operationally, these assumptions can be readily realized in agents that function as
follows:

– The agents can perform nonblocking reads on the channels. Thus no agent is stuck
attempting to make a transition that is not and will not be enabled.

– The agents try actions corresponding to their various transitions with some sort of a
fairness regime. Thus if an agent can perform a send operation in a state, it will not
forever stay in that state without performing the send. It may perform some other
action to exit that state. Likewise, if an agent can read from a particular channel, it
will not forever stay in that state without performing the read.

Although this paper is limited to systems consisting of two agents, it can be expanded
to larger systems. For such systems, we would assume the following in addition to the
above: the agents have unique incoming channels. That is, the agents do not compete
for the messages arriving on their incoming channels.

3.1 Formalization

The interoperability of two agents depends upon the computations that they can jointly
generate. The agents may act one by one or in true concurrency (agents can be globally
concurrent even if each agent itself is single-threaded). Definition 2 captures the above
intuitions for a product transition system of a pair of agents. For any two agents, we
assume that their sets of actions as well as their sets of propositions are disjoint.

Definition 2. Given two agents α := 〈σfl
α , σact

α , ηα, Sα, s0α , Fα, ρα, δα〉 and β :=
〈σfl

β , σact
β , ηβ , Sβ, s0β

, Fβ , ρβ , δβ〉, their product is ×α,β := 〈σfl
× , σact× , η×, S×, s0× ,

F×, ρ×, δ×〉 where,

– σfl
× = σfl

α ∪ σfl
β

– σact
× = σact

α ∪ σact
β

– η× = ηα ∪ ηβ

– S× = Sα × Sβ

– s0× = (s0α , s0β
)

– F× = Fα × Fβ

– the labels on a state (sα, sβ) is given by ρ×(sα, sβ) = ρα(sα) ∪ ρβ(sβ)
– δ× ⊆ S× × E× × S× such that 〈s, e, s′〉 ∈ δ× if and only if 〈sα, eα, s′α〉 ∈ δα,

〈sβ , eβ, s′β〉 ∈ δβ and s = (sα, sβ), s′ = (s′α, s′β), e = eα ∪ eβ

Interoperation in Protocol Enactment 41

Fig. 2. Simple agents and their causal product (interoperable)

Fig. 3. Simple blocking agents and their causal product. Agents are noninteroperable because no
causal final state is reachable from state 01’.

The technical motivation behind Definition 2 is that it accommodates the transitions that
would globally result as the agents enact the given protocol. When the agents act one
by one, the transitions are labeled with an action from their respective sets of actions.
When the agents act concurrently, the transitions are labeled by a pair of actions, one
from each agent. Figure 2 shows two agents—one does !x, and the other ?x—and their
product. In this product, 00′ is the initial state and 11′ is a final state.

Figures 2–8 each contains three transition systems: one for agent α (identified by
states labeled with one digit), one for agent β (identified by states labeled with one
digit followed by an apostrophe as in 0′), and their product (identified by states that
contain states labeled with two digits—the second with an apostrophe). The start states
of the two agents are indicated by 0 and 0′ respectively. The final states are represented
by concentric circles.

Our communication model is one in which agents communicate asynchronously over
a bidirectional channel and each agent’s buffer is bounded RAM. As explained earlier,
the state of an agent serves to capture the history of actions, and since each action
can only occur once, the size of an agent’s buffer is bounded by the size of its set of
actions. For the same reason, an attempt to send a message never blocks. A joint state
in a product represents the union of both agents’ buffers. The receipt of a message fails
if it is attempted before the message is sent. Definition 3 captures these observations
formally in terms of causal enablement. Specifically, a state enables a transition if all
the actions listed in the transition succeed. Because there is only one channel, it is left
implicit in the definition.

42 A.K. Chopra and M.P. Singh

Fig. 4. Agents with a symmetric choice and their product (interoperable)

Definition 3. Given a transition 〈si, ei, si+1〉 ∈ δ× in a product ×α,β :=〈σfl
× , σact

× , η×,
S×, s0× , F×,ρ×, δ×〉, si causally enables ei, denoted by si |=ce ei if and only if

ei = ε or,

∀?p ∈ ei(η(!p) ∈ si or !p ∈ ei).

Definition 3 means that a transition is enabled if for each receive attempted in it, a
corresponding send has been performed previously or is being performed concurrently.
For example, in Figure 2

01′ |=ce {?x}

00′ �|=ce {?x}.

In Figures 2–8, the solid transitions are causally enabled whereas the dotted ones are
not causally enabled. Definition 4 says that if a state is reachable from the initial state
by causally enabled transitions, then it is causal.

Definition 4. The set of causal states in a product is defined as follows:

(i) s0 is causal,
(ii) s′ is causal if ∃〈s, e, s′〉 ∈ δ×: s is causal and s |=ce e,

(iii) all states that are not causal according to the above are noncausal.

In Figures 2–8, causal states are indicated with solid circles, whereas the noncausal
states are indicated with dashed circles.

Interoperation in Protocol Enactment 43

Fig. 5. Agents with limited send choice and their product (interoperable)

Fig. 6. Agents with no receive choice and their product. Agents are noninteroperable because no
final state is reachable from state 10’ which itself is causal.

Definition 5 say that two agents α and β are interoperable if and only if for each
causal state s, there exists a final state that is reachable from s through causally enabled
transitions. Note that the definition does not simply state that there must exists some
causally enabled path from the start state to some final state in the product for two
agents to be interoperable. It is stronger than that. The definition reflects the fact there

44 A.K. Chopra and M.P. Singh

Fig. 7. Agents with out-of-order receives and their product (interoperable)

Fig. 8. Agents making nonlocal choice and their causal product (interoperable)

might be no causally enabled transition in the middle of an interaction, in which case the
agents are determined noninteroperable. We introduce a function causal which takes a
product state and returns true if and only if the state is causal.

Definition 5. Let ×α,β := 〈σfl
× , σact

× , η×, S×, s0× , F×, ρ×, δ×〉 be the product of two
agents α and β. Agents α and β are interoperable if and only if

∀si : causal(si)(∃〈si, ei, si+1〉, 〈si+1, ei+1, si+2〉, . . . , 〈sn−1, en−1, sn〉 :

∀j : (i ≤ j ≤ n)(causal(sj) and sn ∈ F×)).

Each pair of agents in the Figures 2–8 is labeled interoperable or noninteroperable based
upon the test in Definition 5. The agents in Figure 2 are interoperable as one agent sends

Interoperation in Protocol Enactment 45

Fig. 9. Variations of customer and merchant agents and their interoperability

x and the other receives x. The agents in Figure 3 are noninteroperable as one agent can
only send y, whereas the other may only receive x. Computationally, the problem state
is 01’, which is a causal state, but no causal final state is reachable from it. The agents
in Figure 4 are interoperable—realistic as given the nonblocking receive semantics out-
lined earlier, eventually some message will be received. In Figure 5, one agent can

46 A.K. Chopra and M.P. Singh

receive x or y, but the other can only send y. These agents are interoperable and again,
realistically so—because of the nonblocking semantics, eventually the receipt of y will
succeed. Figure 6 shows two agents, one of which can send either x or y, and the other
may only receive y. These agents are noninteroperable because the sending agent may
choose to send x, in which case the other agent will never progress to a final state. Com-
putationally, the problem state is 10’, a causal state from which no causal final state is
reachable. Figure 7 shows two agents, one of which sends x followed by y, whereas the
other attempts to receive them in the opposite order, that is y followed by x. Since our
definition of causal enablement models a random access buffer, the agents turn out to
be interoperable. Finally, Figure 8 shows two agents, one of which may either receive
x or send y, whereas the other may send x or receive y. These agents turn out to be
interoperable, which is supported by our operational assumptions.

4 Discussion

Interoperability is a crucial aspect of compliance; however, it is not the only one. Con-
formance is another aspect of compliance. For an agent to produce only compliant exe-
cutions, it has to be both conformant with some stated protocol, and interoperable with
the agent it is interacting with. Conformance has been formalized in previous work [4].
In this paper, we have devised a formal interoperability test for agents. The interoper-
ability test is essentially a reachability test for final states in an appropriately marked
product transition system.

4.1 Temporal Logic

We assume the standard branching time temporal logic. Given the product of two
agents, computed as above, the agents are interoperable if and if the following formula
is true.

AG(causal → E(causal U (final ∧ causal)))

The proposition causal is true if and only if a state in the model is causal, and final
is true if and only if a state belongs to the set of final states.

4.2 Blocking Receives

It is interesting to consider what happens when we drop the assumption that receives
are nonblocking, and instead assume that they are blocking. In that case, the above def-
inition of interoperability is optimistic: it makes sense only under the assumption of
angelic nondeterminism. That is, if there is a possibility of reaching some joint final
state, then the agents will magically take only those actions that necessarily take them
there. In essence, the choices are not made by agents, but are made automatically for
them. For instance, in Figure 5, our test for interoperability determines the agents inter-
operable. However, note they are not interoperable in case agent α decides to receive
x. They are only interoperable under the assumption that an agent reads whatever is
available in its end of the channel. For all practical purposes, at the level of abstraction
of the transition system, a “good” choice was made nondeterministically. To consider

Interoperation in Protocol Enactment 47

another example, see Figure 8. If α and β choose to do ?y and ?x respectively—no mat-
ter what, they must each receive first before sending—then the agents would deadlock.
(In distributed computing, this problem is commonly referred to as the nonlocal choice
problem [14]). But again the choice to send or receive is not made by the agents; it is
simply made for them nondeterministically.

The question then is: in the operational assumption that receives are blocking, how
do we build agents in practice when angelic nondeterminism is not around to help make
choices? The answer is: by encoding additional knowledge required to make the choices
in the agent’s design. Figure 9 shows variations of the customer and merchant agents
with a focus on only the goods-payment exchange. Each row in the Figure depicts a
customer-merchant pair and states their interoperability. For each transition system, the
labels s and f indicate the start and final states respectively; other states are not made
explicit. The interesting thing is that only in case 5—when for both agents there is no
choice but to receive first and thus deadlock—are the agents determined noninteroper-
able by Definition 5. In all other cases, in all stages of the interaction, there is always a
causally enabled transition until a joint final state is reached. More importantly, in cases
1 and 4, the agents’ choices have to resolved so that they make compatible choices—
which is where angelic nondeterminism helps us. In practice, however, the agents’ de-
sign would have to be amended so that the pairs of agents in cases 1 and 4 would
resemble either the pair of case 2 or case 3. In previous work [3], we have specified
agents in C+ [10], an action description language with a transition system semantics.
C+ is elaboration-tolerant meaning that the addition of new axioms (knowledge) to a
C+ theory could possibly invalidate old conclusions; in other words, transitions may be
removed by adding new knowledge about the actions. This enables a designer to specify
agents in C+ corresponding to the pair of case 1, and then depending upon the context
in which the agents are to be deployed, the designer could add additional knowledge
to turn them into either the pair of case 2 or case 3. For example, if the customer is
not willing to pay first but the merchant is willing to send goods first, then the de-
signer could turn them into the agents of case 3, whereas if they both trust each other,
then the could turn them into case 2. An optimistic approach to component compos-
ability is that two components are composable if there exists some environment under
which they can work together [6]. Under the assumption that receives are blocking, our
definition of interoperability may be seen as an optimistic one: two agents can work to-
gether in practice, if they are interoperable by our definition, and if new axioms encod-
ing additional knowledge may be appended to their specifications to make them work
together.

4.3 Literature

Interoperability leads to a useful notion of compositionality: loosely speaking, two ar-
bitrary agents can be composed if they can interoperate. Our formalization thus tells us
which pairs of agents can be composed. We plan to extend our formalization to groups
of agents.

Dastani et al. [5] describe an approach of composing multiagent systems by com-
posing their coordination specifications, which are modeled as connectors. Omicini
et al. [15] model composition of distributed workflows through programmable tuple

48 A.K. Chopra and M.P. Singh

spaces. However, none of these works delve into the question of which agents or work-
flows are composable.

Fu et al. [9] propose conditions for the realizability of protocols—a protocol can be
realized if a set of finite agents can generate exactly the conversations in the protocol.
Realizability of a protocol is orthogonal to interoperability between agents. A protocol
may not be realizable, however agents that follow their respective roles in the protocol
could be interoperable. On the other hand, interoperable agents could be following roles
in distinct protocols.

Kazhamiakin et al. [11] construct a hierarchy of communication models depending
on factors such as synchrony and buffers among other, and use this framework to find
the best fit communication model for a given service composition such that the cost
of further verification is cheapest. However, their method assumes that the services are
composable under some model; they present no algorithm that decides composability.

Baldoni et al. [2] and Endriss et al. [7] present alternative notions of conformance
that are closely tied to interoperability, thereby violating the orthogonality of confor-
mance and interoperability. As a result, many agents that should be considered con-
formant in a practical setting—and are determined to be conformant according to our
formalization—are rendered nonconformant in theirs. For example, they would both
determine the customer who sends a reminder to the merchant to send goods to be
nonconformant.

Approaches based on verifying compliance at runtime [1,16] are important in the
context of open systems since agents may behave in unpredictable ways; also it is nec-
essary to have independent arbiters in case of disputes involving agents.

4.4 Directions

Our current formalization supports a useful but limited class of agents: those that in-
teract with only one other agent, and eventually terminate. Our future work involves
extending this work to more general agents: specifically, those that interact with multi-
ple other agents and have infinite runs.

References

1. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specification and
verification of agent interaction protocols in a logic-based system. In: Proceedings of the
19th ACM Symposium on Applied Computing, pp. 72–78 (2004)

2. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of protocol conformance and
agent interoperability. In: Toni, F., Torroni, P. (eds.) CLIMA VI. LNCS (LNAI), vol. 3900,
pp. 265–283. Springer, Heidelberg (2006)

3. Chopra, A.K., Singh, M.P.: Contextualization of commitment protocols. In: Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems
(2006)

4. Chopra, A.K., Singh, M.P.: Protocol compliant interactions: Conformance, coverage, and
interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327,
Springer, Heidelberg (2006)

Interoperation in Protocol Enactment 49

5. Dastani, M., Arbab, F., de Boer, F.: Coordination and composition in multi-agent systems.
In: AAMAS 2005. Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 439–446 (2005)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Joint 8th Euro-
pean Software Engineering Conference (ESEC) and 9th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-9), pp. 109–120 (2001)

7. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based agents. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 679–
684 (2003)

8. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: AAMAS. Proceedings of the 1st International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 535–542. ACM Press, New York (2002)

9. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-
tion of reactive electronic services. Theoretical Computer Science 328(1-2), 19–37 (2004)

10. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2), 49–104 (2004)

11. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in web ser-
vice compositions. In: Proceedings of the 15th International Conference on World Wide Web,
pp. 267–276 (2006)

12. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Journal of Autonomous
Agents and Multiagent Systems special issue on Agent Communication (JAAMAS) 14(2),
143–163 (2006)

13. Mazouzi, H., Seghrouchni, A.E.F., Haddad, S.: Open protocol design for complex interac-
tions in multi-agent systems. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 517–526 (2002)

14. Mooij, A.J., Goga, N.: Dealing with non-local choice in IEEE 1073.2’s standard for remote
control. In: Amyot, D., Williams, A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 257–270.
Springer, Heidelberg (2005)

15. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordination arti-
facts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp.
228–246. Springer, Heidelberg (2006)

16. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open Web-based multiagent systems. Journal of Autonomous Agents and Multi-Agent Sys-
tems 2(3), 217–236 (1999)

17. Vitteau, B., Huget, M.-P.: Modularity in interaction protocols. In: Dignum, F.P.M. (ed.) ACL
2003. LNCS (LNAI), vol. 2922, pp. 291–309. Springer, Heidelberg (2004)

18. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS.
LNCS (LNAI), vol. 2636, pp. 527–534. Springer, Heidelberg (2003)

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 50–68, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Agent Models and Dynamical Systems

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV, The Netherlands
{tbosse, sharp, treur}@cs.vu.nl

http://www.cs.vu.nl/~{tbosse, sharp, treur}

Abstract. Agent-based modelling approaches are usually based on logical
languages, whereas in many areas dynamical system models based on
differential equations are used. This paper shows how to model complex agent
systems, integrating quantitative, numerical and qualitative, logical aspects, and
how to combine logical and mathematical analysis methods.

1 Introduction

Existing models for complex systems are often based on quantitative, numerical
methods such as Dynamical Systems Theory (DST) [23], and more in particular,
differential equations. Such approaches often use numerical variables to describe
global aspects of the system and how they affect each other over time; for example,
how the number of predators affects the number of preys. An advantage of such
numerical approaches is that numerical approximation methods and software
environments are available for simulation.

The relatively new agent-based modelling approaches to complex systems take into
account the local perspective of a possibly large number of separate agents and their
specific behaviours in a system; for example, the different individual predator agents
and prey agents. These approaches are usually based on qualitative, logical languages.
An advantage of such logical approaches is that they allow (automated) logical
analysis of the relationships between different parts of a model, for example
relationships between global properties of the (multi-agent) system as a whole and
local properties of the basic mechanisms within (agents of) the system. Moreover, by
means of logic-based approaches, declarative models of complex systems can be
specified using knowledge representation languages that are close to the natural
language. An advantage of such declarative models is that they can be considered and
analysed at a high abstract level. Furthermore, automated support (e.g., programming
tools) is provided for manipulation and redesign of models.

Complex systems, for example organisms in biology or organisations in the socio-
economic area, often involve both qualitative aspects and quantitative aspects. In
particular, in the area of Cognitive Science, the lower-level cognitive processes of
agents (e.g., sensory or motor processing) are often modelled using DST-based
approaches. Furthermore, at the global level the dynamics of the environment, in
which agents are situated, is often described by continuous models (i.e., models based

 Integrating Agent Models and Dynamical Systems 51

on differential equations); e.g., dynamic models of markets, or natural environmental
oscillations. Yet agent-based (logical) languages are often used for describing high-
level cognitive processes of agents (e.g., processes related to reasoning) and agent
interaction with the environment (e.g., agent actions, execution of tasks).

It is not easy to integrate both types of approaches in one modelling method. On
the one hand, it is difficult to incorporate logical aspects in differential equations. For
example, qualitative behaviour of an agent that depends on whether the value of a
variable is below or above a threshold is difficult to describe by differential equations.
On the other hand, quantitative methods based on differential equations are not usable
in the context of most logical, agent-based modelling languages, as these languages
are not able to handle real numbers and calculations.

This paper shows an integrative approach to simulate and analyse complex
systems, integrating quantitative, numerical and qualitative, logical aspects within one
expressive temporal specification language. Some initial ideas behind the simulation
approach proposed in this paper were described in [5, 6]. The current paper elaborates
upon these ideas by proposing more extensive means to design precise, stable, and
computationally effective simulation models for hybrid systems (i.e., comprising both
quantitative and qualitative aspects). Furthermore, it proposes techniques for analysis
of hybrid systems, which were not previously considered elsewhere. The developed
simulation and analysis techniques are supported by dedicated tools.

In Section 2, this language (called LEADSTO) is described in detail, and is applied
to solve an example differential equation. In Section 3, it is shown how LEADSTO
can solve a system of differential equations (for the case of the classical Predator-Prey
model), and how it can combine quantitative and qualitative aspects within the same
model. Section 4 demonstrates how existing methods for approximation (such as the
Runge-Kutta methods) can be incorporated into LEADSTO, and Section 5 shows how
existing methods for simulation with dynamic step size can be incorporated. Section 6
demonstrates how interlevel relationships can be established between dynamics of
basic mechanisms (described in LEADSTO) and global dynamics of a process
(described in a super-language of LEADSTO). Finally, Section 7 is a discussion.

2 Modelling Dynamics in LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics
called calculus, the Dynamical Systems Theory [23] advocates to model dynamics by
continuous state variables and changes of their values over time, which is also
assumed continuous. In particular, systems of differential or difference equations are
used. This may work well in applications where the world states are modelled in a
quantitative manner by real-valued state variables. The world’s dynamics in such
application show continuous changes in these state variables that can be modelled by
mathematical relationships between real-valued variables. However, not for all
applications dynamics can be modelled in a quantitative manner as required for DST.
Sometimes qualitative changes form an essential aspect of the dynamics of a process.
For example, to model the dynamics of reasoning processes usually a quantitative
approach will not work. In such processes states are characterised by qualitative state
properties, and changes by transitions between such states. For such applications often

52 T. Bosse, A. Sharpanskykh, and J. Treur

qualitative, discrete modelling approaches are advocated, such as variants of modal
temporal logic, e.g. [20]. However, using such non-quantitative methods, the more
precise timing relations are lost too. For the LEADSTO language described in this
paper, the choice has been made to consider the timeline as continuous, described by
real values, but for state properties both quantitative and qualitative variants can be
used. The approach subsumes approaches based on simulation of differential or
difference equations, and discrete qualitative modelling approaches. In addition, the
approach makes it possible to combines both types of modelling within one model.
For example, it is possible to model the exact (real-valued) time interval for which
some qualitative property holds. Moreover, the relationships between states over time
are described by either logical or mathematical means, or a combination thereof. This
will be explained in more detail in Section 2.1. As an illustration, in Section 2.2 it will
be shown how the logistic model for population growth in resource-bounded
environments [4] can be modelled and simulated in LEADSTO.

2.1 The LEADSTO Language

Dynamics is considered as evolution of states over time. The notion of state as used
here is characterised on the basis of an ontology defining a set of properties that do or
do not hold at a certain point in time. For a given (order-sorted predicate logic)
ontology Ont, the propositional language signature consisting of all state ground atoms
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state
properties based on a certain ontology Ont are formalised by the propositions that can
be made (using conjunction, negation, disjunction, implication) from the ground
atoms. A state S is an indication of which atomic state properties are true and which
are false, i.e., a mapping S: APROP(Ont) → {true, false}.

To specify simulation models a temporal language has been developed. This
language (the LEADSTO language [7]) enables to model direct temporal
dependencies between two state properties in successive states, also called dynamic
properties. A specification of dynamic properties in LEADSTO format has as
advantages that it is executable and that it can often easily be depicted graphically.
The format is defined as follows. Let α and β be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real numbers.
In the LEADSTO language the notation α →→e, f, g, h β (also see Fig. 1), means:

If state property α holds for a
certain time interval with duration
g, then after some delay (between e
and f) state property β will hold for
a certain time interval of length h.

An example dynamic
property that uses the LEADSTO
format defined above is the
following: “observes(agent_A,

food_present) →→ 2, 3, 1, 1.5 beliefs(agent_A, food_present)”. Informally, this example expresses
the fact that, if agent A observes that food is present during 1 time unit, then after a
delay between 2 and 3 time units, agent A will belief that food is present during 1.5
time units. In addition, within the LEADSTO language it is possible to use sorts,

α
β

t1

e

g h

t2

time

f
t0

Fig. 1. Timing relationships for LEADSTO
expressions

 Integrating Agent Models and Dynamical Systems 53

variables over sorts, real numbers, and mathematical operations, such as in
“has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)”. Next, a trace or trajectory γ over a state
ontology Ont is a time-indexed sequence of states over Ont (where the time frame is
formalised by the real numbers). A LEADSTO expression α →→e, f, g, h β, holds for a
trace γ if:

∀t1 [∀t [t1–g ≤ t < t1 ⇒ α holds in γ at time t] ⇒ ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h ⇒ β holds in γ at time t']

To specify the fact that a certain event (i.e., a state property) holds at every state
(time point) within a certain time interval a predicate holds_during_interval(event, t1, t2)
is introduced. Here event is some state property, t1 is the beginning of the interval and
t2 is the end of the interval.

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can
be considered as logical expressions with a declarative, temporal semantics, showing
what it means that they hold in a given trace. On the other hand they can be used to
specify basic mechanisms of a process and to generate traces, similar to Executable
Temporal Logic [3]. More details on the semantics of LEADSTO can be found in [7].

2.2 Solving the Initial Value Problem in LEADSTO: Euler’s Method

Often behavioural models in the Dynamical Systems Theory are specified by systems
of differential equations with given initial conditions for continuous variables and
functions. A problem of finding solutions to such equations is known as an initial
value problem in the mathematical analysis. One of the approaches for solving this
problem is based on discretisation, i.e., replacing a continuous problem by a discrete
one, whose solution is known to approximate that of the continuous problem. For this
methods of numerical analysis are usually used [22]. The simplest approach for
finding approximations of functional solutions for ordinary differential equations is
provided by Euler’s method. Euler’s method for solving a differential equation of the
form dy/dt = f(y) with the initial condition y(t0)=y0 comprises the difference equation
derived from a Taylor series:

y(t) = n

n

n

tt
n

ty
)(*

!
)(

0
0

0
)(

−∑
∞

=

,

where only the first member is taken into account: yi+1=yi+h* f(yi), where i≥0 is the step
number and h>0 is the integration step size. This equation can be modelled in the
LEADSTO language in the following way:

• Each integration step corresponds to a state, in which an intermediate value of y
is calculated.

• The difference equation is modelled by a transition rule to the successive state in
the LEADSTO format.

• The duration of an interval between states is defined by a step size h.

Thus, for the considered case the LEADSTO simulation model comprises the rule:

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

54 T. Bosse, A. Sharpanskykh, and J. Treur

The initial value for the function y is specified by the following LEADSTO rule:

holds_during_interval(has_value(y, y0), 0, h)

By performing a simulation of the obtained model in the LEADSTO environment
an approximate functional solution to the differential equation can be found.

To illustrate the proposed simulation-based approach based on Euler’s method in
LEADSTO, the logistic growth model or the Verhulst model [4] which is often used
to describe the population growth in resource-bounded environments, is considered:
dP/dt = r*P(1-P/K), where P is the population size at time point t; r and K are some
constants. This model corresponds to the following LEADSTO simulation model:
has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+ h*r* v1*(1-v1/K)). The simulation result of this
model with the parameters r=0.5 and K=10 and initial value P(0)=1 is given in Figure 2.

Fig. 2. Logistic growth function modelled in LEADSTO with parameters r=0.5, K=10, P(0)=1

3 Modelling the Predator-Prey Model in LEADSTO

The proposed simulation-based approach can be applied for solving a system of
ordinary differential equations. In order to illustrate this, the classical Lotka-Volterra
model (also known as a Predator-Prey model) [21] is considered. The Lotka-Volterra
describes interactions between two species in an ecosystem, a predator and a prey.
The model consists of two equations: the first one describes how the prey population
changes and the second one describes how the predator population changes. If x(t) and
y(t) represent the number of preys and predators respectively, that are alive in the
system at time t, then the Lotka-Volterra model is defined by: dx/dt = a*x - b*x*y ;
dy/dt = c*b*x*y - e*y where the parameters are defined by: a is the per capita birth rate of
the prey, b is a per capita attack rate, c is the conversion efficiency of consumed prey
into new predators, and e is the rate at which predators die in the absence of prey. To
solve this system, numerical methods derived from a Taylor series up to some order
can be used. In the following section it will be shown how Euler’s (first-order rough)
method can be used for creating a LEADSTO simulation model for finding the
approximate solutions for the Predator-Prey problem. After that, in Section 3.2 it will
be demonstrated how the generated LEADSTO simulation model can be extended by
introducing qualitative behavioural aspects in the standard predator-prey model.
Section 3.3 briefly presents a more elaborated example of a LEADSTO simulation
model combining quantitative and qualitative aspects of behaviour, addressing
simulation of human conditioning processes.

 Integrating Agent Models and Dynamical Systems 55

3.1 The LEADSTO Language

Using the technique described in Section 2.2, the Lotka-Volterra model is translated
into a LEADSTO simulation model as follows:

 has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2+h*(c*b*v1*v2-e*v2))

The initial values for variables and functions are specified as for the general case.
Although Euler’s method offers a stable solution to a stable initial value problem, a
choice of initial values can significantly influence the model’s behaviour. More
specifically, the population size of both species will oscillate if perturbed away from
the equilibrium. The amplitude of the oscillation depends on how far the initial values
of x and y depart from the equilibrium point. The equilibrium point for the considered
model is defined by the values x=e/(c*b) and y=a/b. For example, for the parameter
settings a=1.5, b=0.2, c=0.1 and e=0.5 the equilibrium is defined by x=25 and y=7.5. Yet
a slight deviation from the equilibrium point in the initial values (x0=25, y0=8) results in
the oscillated (limit cycle) behaviour.

3.2 Extending the Standard Predator-Prey Model with Qualitative Aspects

In this section, an extension of the standard predator-prey model is considered, with
some qualitative aspects of behaviour. Assume that the population size of both
predators and preys within a certain eco-system is externally monitored and controlled
by humans. Furthermore, both prey and predator species in this eco-system are also
consumed by humans. A control policy comprises a number of intervention rules that
ensure the viability of both species. Among such rules could be following:

- in order to keep a prey species from extinction, a number of predators should be
controlled to stay within a certain range (defined by pred_min and pred_max);

- if a number of a prey species falls below a fixed minimum (prey_min), a number of
predators should be also enforced to the prescribed minimum (pred_min);

- if the size of the prey population is greater than a certain prescribed bound
(prey_max), then the size of the prey species can be reduced by a certain number
prey_quota (cf. a quota for fish catch).

These qualitative rules can be encoded into the LEADSTO simulation model for
the standard predator-prey case by adding new dynamic properties and changing the
existing ones in the following way:

has_value(x, v1) ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h

has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h

has_value(y, v2+h* (c*b*v1*v2-e*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h has_value(y, pred_min)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h has_value(y, pred_min)

The result of simulation of this model using Euler’s method with the parameter
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100,
prey_quota=20, x0=90, y0=10 is given in Fig. 3.

56 T. Bosse, A. Sharpanskykh, and J. Treur

Fig. 3. Simulation results for the Lotka-Volterra model combined some qualitative aspects

3.3 Example Hybrid LEADSTO Specification - Model for Conditioning

Research into conditioning is aimed at revealing the principles that govern associative
learning. An important issue in conditioning processes is the adaptive timing of the
conditioned response to the appearance of the unconditioned stimulus. This feature is
most apparent in an experimental procedure called trace conditioning. In this
procedure, a trial starts with the presentation of a warning stimulus (S1; comparable
to a conditioned stimulus). After a blank interval, called the foreperiod, an imperative
stimulus (S2, comparable to an unconditioned stimulus) is presented to which the
participant responds as fast as possible. The reaction time to S2 is used as an estimate
of the conditioned state of preparation at the moment S2 is presented. In this case, the
conditioned response obtains its maximal strength, here called peak level, at a
moment in time, called peak time, that closely corresponds to the moment the
unconditioned stimulus occurs.

Machado developed a basic model that describes the dynamics of these
conditioning processes in terms of differential equations [18]. The structure of this
model is shown in Figure 4. The model posits a layer of timing nodes and a single
preparation node. Each timing node is connected both to the next (and previous)
timing node and to the preparation node. The connection between each timing node
and the preparation node (called associative link) has an adjustable weight associated
to it. Upon the presentation of a warning stimulus, a cascade of activation propagates
through the timing nodes according to a regular pattern. Owing to this regularity, the
timing nodes can be likened to an internal clock or pacemaker. At any moment, each
timing node contributes to the activation of the preparation node in accordance with
its activation X and its corresponding weight W. The activation of the preparation
node reflects the participant's preparatory state, and is as such related to reaction time.

The weights reflect the state of conditioning, and are adjusted by learning rules, of
which the main principles are as follows. First, during the foreperiod extinction takes
place, which involves the decrease of weights in real time in proportion to the
activation of their corresponding timing nodes. Second, after the presentation of the
imperative stimulus a process of reinforcement takes over, which involves an increase
of the weights in accordance with the current activation of their timing nodes, to

 Integrating Agent Models and Dynamical Systems 57

preserve the importance of the imperative moment. Machado describes the more
detailed dynamics of the process by a mathematical model (based on linear
differential equations), representing the (local) temporal relationships between the
variables involved. For example, d/dt X(t,n) = λX(t,n-1) - λX(t,n) expresses how the
activation level of the n-th timing node X(t+dt,n) at time point t+dt relates to this level
X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th timing node at time
point t. Similarly, as another example, d/dt W(t,n) = -αX(t,n)W(t,n) expresses how the n-th
weight W(t+dt,n) at time point t+dt relates to this weight W(t,n) at time point t and the
activation level X(t,n) of the n-th timing node at time point t.

Fig. 4. Structure of Machado’s conditioning model (adjusted from [18])

In [6], LEADSTO has been used to specify Machado’s mathematical model in a
logical, declarative manner. Some of the dynamic properties used are shown below:

LP5 (Extinction of associative links)
LP5 expresses the adaptation of the associative links during extinction, based on their
own previous state and the previous state of the corresponding timing node. Here, α is
a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step))

LP6 (Reinforcement of associative links)
LP6 expresses the adaptation of the associative links during reinforcement, based on
their own previous state and the previous state of X. Here, β is a learning rate parameter.
∀u,v:REAL ∀n:INTEGER
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step)

An example simulation trace that has been generated on the basis of this model is
shown in Figure 5. The upper part of the figure shows conceptual, qualitative
information (e.g., the state properties that indicate the stage of the process); the lower
part shows more quantitative concepts, i.e., the state properties involving real
numbers with changing values over time (e.g., the preparation level of the person). To
limit complexity, only a selection of important state properties was depicted. In the
lower part, all instantiations of state property r(X) are shown with different (real)
values for X (shown on the vertical axis), indicating the participant’s preparation level
to respond to a stimulus. For example, from time point 1 to 9, the level of preparation
is 0.0, and from time point 9 to 10, the level of preparation is 0.019.

S1

Timing nodes with
activation level X

Preparation node

Associative links of
variable weight W

Response strength R

58 T. Bosse, A. Sharpanskykh, and J. Treur

Figure 5 describes the dynamics of a person that is subject to conditioning in an
experiment with a foreperiod of 6 time units. As can be seen in the trace, the level of
response-related activation increases on each trial. Initially, the subject is not prepared
at all: at the moment of the imperative stimulus (S2), the level of response is 0.0.
However, already after two trials a peak in response level has developed that
coincides exactly with the occurrence of S2. Although this example is relatively
simple, it demonstrates the power of LEADSTO to combine (real-valued) quantitative
concepts with (conceptual) qualitative concepts.

Fig. 5. Example simulation trace of a conditioning process

4 Simulating the Predator-Prey Model by the Runge-Kutta
Method

As shown in [22], within Euler’s method the local error at each step (of size h) is
O(h2), while the accumulated error is O(h). However, the accumulated error grows
exponentially as the integration step size increases. Therefore, in situations in which
precision of a solution is required, high order numerical methods are used. For the
purpose of illustration of high-order numerical approaches the fourth-order Runge-
Kutta method is considered. This method is derived from a Taylor expansion up to the
fourth order. It is known to be very accurate (the accumulated error is O(h4)) and stable
for a wide range of problems. The Runge-Kutta method for solving a differential
equation of the form dx/dt = f(t, x) is described by the following formulae:

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4),

where i≥0 is the step number, h>0 is the integration step size, and

k1 = f(ti, xi), k2 = f(ti + h/2, xi + h/2 *k1), k3 = f(ti + h/2, xi + h/2 *k2), k4 = f(ti + h, xi + h* k3).

Now, using the Runge-Kutta method, the classical Lotka-Volterra model
considered in the previous section is described in the LEADSTO format as follows:

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14))

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)),

 Integrating Agent Models and Dynamical Systems 59

where:

k11 = a*v1-b*v1*v2, k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 *k11)*(v2 + h/2 *k21), k22 = c*b*(v1
+ h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21), k13 = a*(v1 + h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 =
c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 *k22), k14 = a*(v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23), k24 =
c*b*(v1 + h *k13)*(v2 + h *k23) - e*(v2 + h *k23).

5 Simulation with Dynamic Step Size

Although for most cases the Runge-Kutta method with a small step size provides
accurate approximations of required functions, this method can still be
computationally expensive and, in some cases, inaccurate. In order to achieve a higher
accuracy together with minimum computational efforts, methods that allow the
dynamic (adaptive) regulation of an integration step size are used. This section shows
how such methods can be incorporated in LEADSTO.

To illustrate the use of methods for dynamic step size control, the biochemical
model of [13], summarised in Table 1, is considered.

Table 1. Glycolysis model by [13]

Variables
W: Fructose 6-phosphate
X : phosphoenolpyruvate
Y : pyruvate
N1 : ATP; N2 : ADP; N3 : AMP

Differential equations
X'[t] == 2*Vpfk - Vxy
Y'[t] == Vxy - Vpdc
N1'[t] == Vxy + Vak - Vatpase
N2'[t] == -Vxy - 2*Vak + Vatpase

Moiety conservation
N1[t] + N2[t] + N3 = 20

Initial conditions
N1[0] == 10
N2[0] == 9
Y[0] == 0
X[0] == 0

Fixed metabolites
W = 0.0001; Z = 0

Rate equations
Vxy = 343*N2[t]*X[t]/((0.17 +
 N2[t])*(0.2 + X[t]))
Vak = -(432.9*N3*N1[t] -
 133*N2[t]^2)
Vatpase = 3.2076*N1[t]
Vpdc = 53.1328*Y[t]/(0.3 + Y[t])
 (*10.0*Y[t]*)
Vpfk = 45.4327*W^2/(0.021*(1 +
 0.15*N1[t]^2/N3^2 + W^2))

This model describes the process of glycolysis in Saccharomyces cerevisiae, a
specific species of yeast. This model is interesting to study, because the
concentrations of some of the substances involved (in particular ATP and ADP) are
changing at a variable rate: sometimes these concentrations change rapidly, and
sometimes they change very slowly. Using the technique described in Section 2.2
(based on Euler’s method), this model can be translated to the following LEADSTO
simulation model:

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(x, v1+ (2* (45.4327*w^2/ (0.021* (1+0.15*v3^2/ (20-v3-v4)^2+w^2)))-343*v4*v1/
((0.17+v4)* (0.2+v1)))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(y, v2+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))-53.1328*v2/ (0.3+v2))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n1, v3+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))+ (- (432.9* (20-v3-v4)*v3-133*v4^2))-
3.2076*v3)*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n2, v4+ (-343*v4*v1/ ((0.17+v4)* (0.2+v1))-2*

(- (432.9* (20-v3-v4)*v3-133*v4^2))+3.2076*v3)*h)

60 T. Bosse, A. Sharpanskykh, and J. Treur

The simulation results of this model (with a static step size of 0.00001) are shown
in Fig. 6. Here the curves for N1 and N2 are initially very steep, but become flat after
a while. As demonstrated by Figure 6, for the first part of the simulation, it is
necessary to pick a small step size in order to obtain accurate results. However, to
reduce computational efforts, for the second part a bigger step size is desirable. To
this end, a number of methods exist that allow the dynamic adaptation of the step size
in a simulation. Generally, these approaches are based on the fact that the algorithm
signals information about its own truncation error. The most straightforward (and
most often used) technique for this is step doubling and step halving, see, e.g. [Gear
1971]. The idea of step doubling is that, whenever a new simulation step should be
performed, the algorithm compares the result of applying the current step twice with
the result of applying the double step (i.e., the current step * 2) once. If the difference
between both solutions is smaller than a certain threshold ε, then the double step is
selected. Otherwise, the algorithm determines whether step halving can be applied: it
compares the result of applying the current step once with the result of applying the
half step (i.e., the current step * 0.5) twice. If the difference between both solutions is
smaller than ε, then the current step is selected. Otherwise, the half step is selected.

Fig. 6. Simulation results of applying Euler’s method to [13]’s glycolysis model

Since its format allows the modeller to include qualitative aspects, it is not
difficult to incorporate step doubling and step halving into LEADSTO. To illustrate
this, consider the general LEADSTO rule shown in Section 2.2 for solving a
differential equation of the form dy/dt = f(y) using Euler’s method:

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

Adding step doubling and step halving to this rule yields the following three rules:

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| ≤ ε
→→ 0, 0, 2h, 2h has_value(y, v1+2h* f(v1)) ∧ step(2h)

 Integrating Agent Models and Dynamical Systems 61

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| > ε ∧
|(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε

→→ 0, 0, h, h has_value(y, v1+h* f(v1)) ∧ step(h)

step(h) ∧ has_value(y, v1) ∧ |(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε
→→ 0, 0, 0.5h, 0.5h has_value(y, v1+0.5h* f(v1)) ∧ step(0.5h)

Besides step doubling, many other techniques exist in the literature for dynamically
controlling the step size in quantitative simulations. Among these are several
techniques that are especially aimed at the Runge-Kutta methods, see, e.g., [24],
Chapter 16 for an overview. Although it is possible to incorporate such techniques
into LEADSTO, they are not addressed here because of space limitations.

6 Analysis in Terms of Local-Global Relations

Within the area of agent-based modelling, one of the means to address complexity is
by modelling processes at different levels, from the global level of the process as a
whole, to the local level of basic elements and their mechanisms. At each of these
levels dynamic properties can be specified, and by interlevel relations they can be
logically related to each other; e.g., [14], [27]. These relationships can provide an
explanation of properties of a process as a whole in terms of properties of its local
elements and mechanisms. Such analyses can be done by hand, but also software tools
are available to automatically verify the dynamic properties and their interlevel
relations. To specify the dynamic properties at different levels and their interlevel
relations, a more expressive language is needed than simulation languages based on
causal relationships, such as LEADSTO. The reason for this is that, although the latter
types of languages are well suited to express the basic mechanisms of a process, for
specifying global properties of a process it is often necessary to formulate complex
relationships between states at different time points. To this end, the formal language
TTL has been introduced as a super-language of LEADSTO; cf. [8]. It is based on
order-sorted predicate logic and, therefore, inherits the standard semantics of this
variant of predicate logic. That is, the semantics of TTL is defined in a standard way,
by interpretation of sorts, constants, functions and predicates, and variable
assignments. Furthermore, TTL allows representing numbers and arithmetical
functions. Therefore, most methods used in Calculus are expressible in TTL,
including methods based on derivatives and differential equations. In this section, first
(in Section 6.1) it is shown how to incorporate differential equations in the predicate-
logical language TTL that is used for analysis. Next, in Section 6.2 a number of
global dynamic properties are identified, and it is shown how they can be expressed in
TTL. In Section 6.3 a number of local dynamic properties are identified and expressed
in TTL. Finally, Section 6.4 discusses how the global properties can be logically
related to local properties such that a local property implies the global property.

6.1 The LEADSTO Language

As mentioned earlier, traditionally, analysis of dynamical systems is often performed
using mathematical techniques such as the Dynamical Systems Theory. The question

62 T. Bosse, A. Sharpanskykh, and J. Treur

may arise whether or not such modelling techniques can be expressed in the Temporal
Trace Language TTL. In this section it is shown how modelling techniques used in
the Dynamical Systems approach, such as difference and differential equations, can
be represented in TTL. First the discrete case is considered. As an example consider
again the logistic growth model: dP/dt = r*P(1-P/K). This equation can be expressed in
TTL on the basis of a discrete time frame (e.g., the natural numbers) in a
straightforward manner:

∀t ∀v state(γ , t) |== has_value(P, v) ⇒ state(γ , t+1) |== has_value(P, v + h • r • v • (1 - v/K))

The traces γ satisfying the above dynamic property are the solutions of the difference
equation. However, it is also possible to use the dense time frame of the real numbers,
and to express the differential equation directly. To this end, the following relation is
introduced, expressing that x = dy/dt:

is_diff_of(γ, x, y) :
∀t,w ∀ε>0 ∃δ>0 ∀t',v,v' [0 < dist(t',t) < δ & state(γ, t) |== has_value(x, w) &
state(γ, t) |== has_value(y, v) & state(γ, t') |== has_value(y, v') ⇒ dist((v'-v)/(t'-t),w) < ε]

where γ is the trace that describes the change of values of x and y over time, dist(u,v) is
defined as the absolute value of the difference, i.e. u-v if this is ≥ 0, and v-u otherwise.
Using this, the differential equation can be expressed by is_diff_of(γ , r • P (1 - P/K), P).

The traces γ for which this statement is true are (or include) solutions for the
differential equation. Models consisting of combinations of difference or differential
equations can be expressed in a similar manner. This shows how modelling constructs
often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes
modelling languages based on differential equations, but on the other hand enables the
modeller to express more qualitative, logical concepts as well.

6.2 Mathematical Analysis in TTL: Global Dynamic Properties

Within Dynamical Systems Theory and Calculus, also for global properties of a
process more specific analysis methods are known. Examples of such analysis
methods include mathematical methods to determine equilibrium points, the
behaviour around equilibrium points, and the existence of limit cycles [10]. Suppose a
set of differential equations is given, for example a predator prey model: dx/dt = f(x, y)

dy/dt = g(x, y), where f(x, y) and g(x, y) are arithmetical expressions in x and y. Within
TTL the following abbreviation is introduced as a definable predicate:

point(γ, t, x, v, y, w) ⇔ state(γ, t) |= has_value(x, v) ∧ has_value(y, w)

Using this predicate, the following global properties can for example be specified:

Monotonicity
monotic_increase_after(γ, t, x) ⇔
∀t1, t2 [t ≤ t1 < t2 & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) ⇒ v1<v2]

Bounded
upward_bounded_after_by(γ, t, M) ⇔ ∀t1 [t ≤ t1 & point(γ, t1, x, v1, y, w1) ⇒ v1≤M]

 Integrating Agent Models and Dynamical Systems 63

Equilibrium points
These are points in the (x, y) plane for which, when they are reached by a solution,
the state stays at this point in the plane for all future time points. This can be
expressed as a global dynamic property in TTL as follows:

has_equilibrium(γ, x, v, y, w) ⇔ ∀t1 [point(γ, t1, x, v, y, w) ⇒ ∀t2≥t1 point(γ, t2, x, v, y, w)]
occurring_equilibrium(γ, x, v, y, w) ⇔ ∃t point(γ, t, x, v, y, w) & has_equilibrium(γ, x, v, y, w)

Behaviour Around an Equilibrium
attracting(γ, x, v, y, w, ε0) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ ∀t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒
∀ε>0 ∃t1≥t ∀t2≥t1 [point(γ, t2, x, v2, y, w2) ⇒ dist(v2, w2, v, w) < ε]]

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and (v2,
w2) in the (x, y) plane.

Limit cycle
A limit cycle is a set S in the x, y plane such that
∀t, v, w point(γ, t, x, v, y, w) & (v, w) ∈ S ⇒ ∀t'≥t, v', w' [point(γ, t', x, v', y, w') ⇒ (v', w') ∈ S]

In specific cases the set can be expressed in an implicit manner by a logical and/or
algebraic formula, e.g., an equation, or in an explicit manner by a parameterisation.
For these cases it can be logically expressed that a set S is a limit cycle.

(1) When S is defined in an implicit manner by a formula ϕ(v, w) with S = { (v, w) |
ϕ(v, w) }, then it is defined that S is a limit cycle as follows:

∀t, v, w point(γ, t, x, v, y, w) & ϕ(v, w) ⇒ ∀t'≥t, v', w' [point(γ, t', x, v', y, w') ⇒ ϕ(v', w')]
E.g., when S is a circle defined by a formula of the form S = { (v, w) | v2 + w2 = r2 }

(2) When a set S in the plane is parameterised by two functions c1, c2: [0, 1] → ℜ, i.e.,
S = { (c1(u), c2(u)) | u ∈ [0, 1] }, then S is a limit cycle if

∀t, u point(γ, t, c1(u), c2(u)) ⇒ ∀t'≥t ∃u' point(γ, t', c1(u'), c2(u'))

An example of a parameterising for S in the shape of a circle is as follows:

c1(u) = r cos 2π u, c2(u) = r sin 2π u

In many cases, however, the set S cannot be expressed explicitly in the form of an
equation or an explicitly defined parameterisation. What still can be done often is to
establish the existence of a limit cycle within a certain area, based on the Poincaré-
Bendixson Theorem [16].

6.3 Mathematical Analysis in TTL: Local Dynamic Properties

The global dynamic properties described above can also be addressed from a local
perspective. For example, the property of monotonicity (which was expressed above
for a whole trace after a certain time point t), can also be expressed for a certain
interval (with duration d) around t, as shown below.

Local monotonicity property
monotic_increase_around(γ, t, x, d) ⇔
∀t1, t2 [t-d ≤ t1 < t < t2≤ t+d & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) ⇒ v1< v2]

In terms of f and g:
monotic_increase_around(γ, t, x, d) ⇔ point(γ, t, x, v1, y, w1) ⇒ f(v1, w1) > 0

64 T. Bosse, A. Sharpanskykh, and J. Treur

Local bounding property
upward_bounding_around(γ, t, M, δ, d) ⇔
[point(γ, t, x, v1, y, w1) ⇒ ∀t' [t≤t'≤t+d & point(γ, t', x, v2, y, w2) ⇒ M-v2 ≥ (1-δ)*(M-v1)]

In terms of f and g from the equations dx/dt = f(x, y) and dy/dt = g(x, y):
upward_bounding_around(γ, t, M, δ, d) ⇔ point(γ, t, x, v1, y, w1) ⇒ f(v1, w1) ≤ δ/d (M - v1)

Local equilibrium property
From the local perspective of the underlying mechanism, equilibrium points are those
points for which dx/dt = dy/dt = 0, i.e., in terms of f and g for this case f(x, y) = g(x, y) = 0.
equilibrium_state(v, w) ⇔ f(v, w) = 0 & g(v, w) = 0

Local property for behaviour around an equilibrium:
attracting(γ, x, v, y, w, δ, ε0, d) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒
∀t' [t+d≤t'≤t+2d & point(γ, t', x, v2, y, w2) ⇒ dist(v2, w2, v, w) < δ*dist(v1, w1, v, w)]]

In terms of f and g, this can be expressed by relationships for the eigen values of the
matrix of derivatives of f and g.

Local limit cycle property
Let a set S in the plane be parameterised by two explicitly given functions c1, c2: [0, 1]
→ ℜ, i.e., S = { (c1(u), c2(u)) | u ∈ [0, 1] }, and d1(u) = dc1(u)/du, d2(u) = dc2(u)/du. Then S is
a limit cycle if:

∀t, u point(γ, t, c1(u), c2(u)) ⇒ d1(u)*g(c1(u), c2(u)) = f(c1(u), c2(u))*d2(u)

6.4 Logical Relations Between Local and Global Properties

The properties of local and global level can be logically related to each other by
general interlevel relations, for example, the following ones:

∃d>0 ∀t'≥t monotic_increase_around(γ, t', x, d) ⇒ monotic_increase_after(γ, t, x)

∃d>0, δ>0 ∀t'≥t upward_bounding_around(γ, t, M, δ, d) ⇒ upward_bounded_after_by(γ, t, M)

∀t [state(γ, t) |= equilibrium_state(v, w) ⇒ has_equilibrium(γ, x, v, y, w)

∃d>0, δ>0 attracting(γ, x, v, y, w, δ, ε0, d) ⇒ attracting(γ, x, v, y, w, ε0)

These interlevel relations are general properties of dynamic systems, as explained,
e.g., in [10]. Full proofs for these relations fall outside the scope of this paper.
However, to make them a bit more plausible, the following sketch is given. The first
interlevel relation involving monotonicity can be based on induction on the number of
d-intervals of the time axis between two given time points t1 and t2. The second
interlevel relation, involving boundedness is based on the fact that local bounding
implies that in any d-interval, if the value at the start of the interval is below M, then
it will remain below M in that interval. The third interlevel relation, on equilibrium
points, is based on the fact that if at no time point the value changes, then at all time
points after this value is reached, the value will be the same. For the fourth interlevel
relation, notice that local attractiveness implies that for any d-interval the distance of
the value to the equilibrium value at the end point is less than δ times the value at the
starting point. By induction over the number of d-intervals the limit definition as used
for the global property can be obtained.

 Integrating Agent Models and Dynamical Systems 65

7 Discussion

The LEADSTO approach discussed in this paper provides means to simulate models
of dynamic systems that combine both quantitative and qualitative aspects. A
dynamic system, as it is used here, is a system, which is characterised by states and
transitions between these states. As such, dynamic systems as considered in [23],
which are described by differential equations, constitute a subclass of the dynamic
systems considered in this paper. Systems that incorporate both continuous
components and discrete components are sometimes called hybrid systems. Hybrid
systems are studied in both computer science [9], [19] and control engineering [17].
They incorporate both continuous components, whose dynamics is described by
differential equations and discrete components, which are often represented by finite-
state automata. Both continuous and discrete dynamics of components influence each
other. In particular, the input to the continuous dynamics is the result of some
function of the discrete state of a system; whereas the input of the discrete dynamics
is determined by the value of the continuous state. In the control engineering area,
hybrid systems are often considered as switching systems that represent continuous-
time systems with isolated and often simplified discrete switching events. Yet in
computer science the main interest in hybrid systems lies in investigating aspects of
the discrete behaviour, while the continuous dynamics is often kept simple.

Our LEADSTO approach provides as much place for modelling the continuous
constituent of a system, as for modelling the discrete one. In contrast to many studies
on hybrid systems in computer science (e.g., [25]), in which a state of a system is
described by assignment of values to variables, in the proposed approach a state of a
system is defined using a rich ontological basis (i.e., typed constants, variables,
functions and predicates). This provides better possibilities for conceptualising and
formalising different kinds of systems (including those from natural domains).
Furthermore, by applying numerical methods for approximation of the continuous
behaviour of a system, all variables in a generated model become discrete and are
treated equally as finite-state transition system variables. Therefore, it is not needed to
specify so-called control points [19], at which values of continuous variables are
checked and necessary transitions or changes in a mode of a system’s functioning are
made. Moreover, using TTL, a super-language of LEADSTO, dynamical systems can
be analysed by applying formalised standard techniques from mathematical calculus.

Since LEADSTO has a state-based semantics and allows a high ontological
expressivity for defining state properties, many action-based languages (A, B, C [12],
 L [2] and their extensions) can be represented in (or mapped to) the LEADSTO
format. In particular, trajectories that define the world evolution in action languages
correspond to traces in LEADSTO, fluents evaluated in each state can be represented
by state properties, and transitions between states due to actions can be specified by
LEADSTO rules that contain the corresponding actions within the antecedents.
Furthermore, to represent actions, observations, and goals of agents and facts about
the world, the state ontology of LEADSTO includes corresponding sorts, functions
and predicates. LEADSTO allows representing both static and dynamic laws as they
are defined in [12], and non-deterministic actions with probabilities. To represent and
reason about temporal aspects of actions, LEADSTO includes the sort TIME, which is
a set of linearly ordered time points.

66 T. Bosse, A. Sharpanskykh, and J. Treur

The expressions of query languages used to reason about actions [2], [12] can be
represented in TTL, of which LEADSTO is a sublanguage. TTL formulae can express
causality relations of query languages by implications and may include references to
multiple states (e.g., histories of temporally ordered sequences of states). Using a
dedicated tool [8], TTL formulae can be automatically checked on traces (or
trajectories) that represent the temporal development of agent systems.

Concerning other related work, in [26], a logic-based approach to simulation-based
modelling of ecological systems is introduced. Using this approach, continuous
dynamic processes in ecological systems are conceptualised by system dynamics
models (i.e., sets of compartments with flows between them). For formalising these
models and performing simulations, the logical programming language Prolog is
used. In contrast to this, the LEADSTO approach provides a more abstract (or high-
level) logic-based language for knowledge representation.

Also within the area of cognitive modelling, the idea to combine qualitative and
quantitative aspects within one modelling approach is not uncommon. A number of
architectures have been developed in that area, e.g., ACT-R [1] and SOAR [15]. Such
cognitive architectures basically consist of a number of different modules that reflect
specific parts of cognition, such as memory, rule-based processes, and communication.
They have in common with LEADSTO that they are hybrid approaches, supporting
both qualitative (or symbolic) and quantitative (or subsymbolic) structures. However, in
LEADSTO these qualitative and quantitative concepts can be combined within the
same expressions, whereas in ACT-R and SOAR separate modules exist to express
them. In these cognitive architectures, often the role of the subsymbolic processes is to
control the symbolic processes. For example, the subsymbolic part of ACT-R is
represented by a large set of parallel processes that can be summarised by a number of
mathematical equations, whereas its symbolic part is fulfilled by a production system.
Here, the subsymbolic equations control many of the symbolic processes. For instance,
if multiple production rules in ACT-R’s symbolic part are candidates to be executed, a
subsymbolic utility equation may estimate the relative cost and benefit associated with
each rule and select the rule with the highest utility for execution.

Accuracy and efficiency of simulation results for hybrid systems provided by the
proposed approach to a great extend depend on the choice of a numerical
approximation method. Although the proposed approach does not prescribe usage of
any specific approximation method (even the most powerful of them can be modelled
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be
recommended, especially when the highest level of precision is not required. For
simulating system models, for which high precision is demanded, higher-order
numerical methods with an adaptive step size can be applied.

References

1. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum
Associates, Mahwah, NJ (1998)

2. Baral, C., Gelfond, M., Provetti, A.: Representing Actions: Laws, Observation and
Hypothesis. Journal of Logic Programming 31(1-3), 201–243 (1997)

 Integrating Agent Models and Dynamical Systems 67

3. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future:
Principles of Executable Temporal Logic. Research Studies Press Ltd. and John Wiley &
Sons (1996)

4. Boccara, N.: Modeling Complex Systems. In: Graduate Texts in Contemporary Physics
series, Springer, Heidelberg (2004)

5. Bosse, T., Delfos, M.F., Jonker, C.M., Treur, J.: Modelling Adaptive Dynamical Systems
to analyse Eating Regulation Disorders. Simulation Journal: Transactions of the Society
for Modeling and Simulation International 82, 159–171 (2006)

6. Bosse, T., Jonker, C.M., Los, S.A., van der Torre, L., Treur, J.: Formalisation and Analysis
of the Temporal Dynamics of Conditioning. In: Müller, J.P., Zambonelli, F. (eds.) AOSE
2005. LNCS, vol. 3950, pp. 157–168. Springer, Heidelberg (2006)

7. Bosse, T., Jonker, C.M., Meij, L., van der, L., Treur, J.: LEADSTO: A Language and
Environment for Analysis of Dynamics by Simulation. In: Eymann, T., Klügl, F.,
Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550,
pp. 165–178. Springer, Heidelberg (2005) Extended version in: International Journal of
Artificial Intelligence Tools (to appear, 2007)

8. Bosse, T., Jonker, C.M., Meij, L., van der Sharpanskykh, A., Treur, J.: Specification and
Verification of Dynamics in Cognitive Agent Models. In: Nishida, T. (ed.) IAT 2006, pp.
247–254. IEEE Computer Society Press, Los Alamitos (2006)

9. Davoren, J.M., Nerode, A.: Logics for Hybrid Systems. Proceedings of the IEEE 88(7),
985–1010 (2000)

10. Edwards, C.H., Penney, D.L.: Calculus with Analytic Geometry, 5th edn. Prentice-Hall,
London (1998)

11. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice-Hall, Englewood Cliffs (1971)

12. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16) (1998)
13. Hynne, F., Dano, S., Sorensen, P.G.: Full-scale model of glycolysis in Saccharomyces

cerevisiae. Biophys. Chem. 94(1-2), 121–163 (2001)
14. Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: A Formal

Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems 11, 51–92 (2002)

15. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence.
Artificial Intelligence 33(1), 1–64 (1987)

16. Lefschetz, S.: Differential equations: Geometric theory. Dover Publications, Mineola
(2005)

17. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine 19(5), 59–70 (1999)

18. Machado, A.: Learning the Temporal Dynamics of Behaviour. Psychological Review 104,
241–265 (1997)

19. Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Grossman, R.L., Ravn, A.P.,
Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 4–35. Springer,
Heidelberg (1993)

20. Meyer, J.J.C., Treur, J.: Agent-based Defeasible Control in Dynamic Environments. In:
Gabbay, D., Smets, P. (eds.) Defeasible Reasoning and Uncertainty Management Systems,
vol. 7, Kluwer Academic Publishers, Dordrecht (2002)

21. Morin, P.J.: Community Ecology. Blackwell Publishing, USA (1999)
22. Pearson, C.E.: Numerical Methods in Engineering and Science. CRC Press, Boca Raton

(1986)

68 T. Bosse, A. Sharpanskykh, and J. Treur

23. Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass (1995)

24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C:
The art of scientific computing, 2nd edn. Cambridge university press, Cambridge (1992)

25. Rajeev, A., Henzinger, T.A., Wong-Toi, H.: Symbolic analysis of hybrid systems. In:
CDC. Proceedings of the 36th Annual Conference on Decision and Control, pp. 702–707.
IEEE Computer Society Press, Los Alamitos (1997)

26. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Ushold, M.: Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press, Cambridge (1991)

27. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006. Proc. of the 17th
European Conference on Artificial Intelligence, pp. 290–294. IOS Press, Amsterdam
(2006)

Composing High-Level Plans

for Declarative Agent Programming

Felipe Meneguzzi and Michael Luck

Department of Computer Science
King’s College London

felipe.meneguzzi@kcl.ac.uk,
michael.luck@kcl.ac.uk

Abstract. Research on practical models of autonomous agents has
largely focused on a procedural view of goal achievement. This allows for
efficient implementations, but prevents an agent from reasoning about
alternative courses of action for the achievement of its design objectives.
In this paper we show how a procedural agent model can be modified
to allow an agent to compose existing plans into new ones at runtime
to achieve desired world states. This new agent model can be used to
implement a declarative goals interpreter, since it allows designers to
specify only the desired world states in addition to an agent’s basic ca-
pabilities, enhancing the agent’s ability to deal with failures. Moreover
our approach allows the new plans to be included in the plan library,
effectively enabling the agent to improve its runtime performance over
time.

1 Introduction

The notion of autonomous intelligent agents has become increasingly relevant
in recent years both in relation to numerous real applications and in drawing
together different artificial intelligence techniques. Perhaps the best known and
most used family of agent architectures is that based around the notions of
beliefs, desires and intentions, which is exemplified by such systems as PRS[1],
dMARS[2] and AgentSpeak [3]. For reasons of efficiency and real-time operation,
these architectures have been based around the inclusion of a plan library con-
sisting of predefined encapsulated procedures, or plans, coupled with information
about the context in which to use them [3]. However, designing agents in this
way severely limits an agent’s runtime flexibility, as the agent depends entirely
on the designer’s previous definition of all possible courses of action associated
with proper contextual information to allow the agent to adopt the right plans
in the right situations.

Typically, agent interpreters select plans using more or less elaborate algo-
rithms, but these seldom have any knowledge of the contents of the plans, so
that plan selection is ultimately achieved using fixed rules, with an agent adopt-
ing black box plans based solely on the contextual information that accompanies
them. Alternatively, some agent interpreters allow for plan modification rules to

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 69–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 F. Meneguzzi and M. Luck

allow plans to be modified to suit the current situation [4], but this approach
still relies on a designer establishing a set of rules that considers all potentially
necessary modifications for the agent to achieve its goals. The problem here is
that for some domains, an agent description must either be extremely extensive
(requiring a designer to foresee every possible situation the agent might find
itself in), or will leave the agent unable to respond under certain conditions.

This procedural response to goal achievement has been favoured to enable
the construction of practical systems that are usable in real-world applications.
However, it also causes difficulties in cases of failure. When a procedural agent
selects a plan to achieve a given goal it is possible that the selected plan may
fail, in which case the agent typically concludes that the goal has also failed,
regardless of whether other plans to achieve the same goal might have been
successful. By neglecting the declarative aspect of goals in not considering the
construction of plans on-the-fly, agents lose the ability to reason about alterna-
tive means of achieving a goal, making it possible for poor plan selection to lead
to an otherwise avoidable failure.

In this paper we describe how a procedural agent model can be modified to
allow an agent to build new plans at runtime by chaining existing fine-grained
plans from a plan library into high-level plans. We demonstrate the applica-
bility of this approach through a modification to the AgentSpeak architecture,
allowing for a combination of declarative and procedural aspects. This modi-
fication requires no change to the plan language, allowing designers to specify
predefined procedures for known tasks under ideal circumstances, but also al-
lowing the agent to form new plans when unforeseen situations arise. Though
we demonstrate this technique for AgentSpeak, it can be easily applied to other
agent architectures with an underlying procedural approach to reasoning, such as
JADEX or the basic 3APL [5]. The key contribution is a method to augment an
agent’s runtime flexibility, allowing it to add to its plan library to respond to new
situations without the need for the designer to specify all possible combinations
of low-level operators in advance.

The paper is organised as follows: in Section 2 we briefly review relevant
aspects of AgentSpeak, in order to introduce the planning capability in Section 3;
in Section 4 a classic example is provided to contrast our approach to that
of traditional AgentSpeak; in Section 5 we compare our work with similar or
complementary approaches that also aim to improve agent autonomy; finally, in
Section 6 a summary of contributions is provided along with further work that
can be carried out to improve our system.

2 AgentSpeak

AgentSpeak [3] is an agent language that allows a designer to specify a set of
procedural plans which are then selected by an interpreter to achieve the agent’s
design goals. It evolved from a series of procedural agent languages originally
developed by Rao and Georgeff [6]. In AgentSpeak an agent is defined by a
set of beliefs and a set of plans, with each plan encoding a procedure that is

Composing High-Level Plans for Declarative Agent Programming 71

assumed to bring about a desired state of affairs, as well as the context in which
a plan is relevant. Goals in AgentSpeak are implicit, and plans intended to fulfil
them are invoked whenever some triggering condition is met in a certain context,
presumably the moment at which this implicit goal becomes relevant.

The control cycle of an AgentSpeak interpreter is driven by events on data
structures, including the addition or deletion of goals and beliefs. These events
are used as triggering conditions for the adoption of plans, so that adding an
achievement goal means that an agent desires to fulfil that goal, and plans whose
triggering condition includes that goal (i.e. are relevant to the goal) should lead
to that goal being achieved. Moreover, a plan includes a logical condition that
specifies when the plan is applicable in any given situation. Whenever a goal
addition event is generated (as a result of the currently selected plan having
subgoals), the interpreter searches the set of relevant plans for applicable plans;
if one (or more) such plan is found, it is pushed onto an intention structure for
execution. Elements in the intention structure are popped and handled by the
interpreter. If the element is an action it is executed, while if the element is a
goal, a new plan is added into the intention structure and processed. During this
process, failures may take place either in the execution of actions, or during the
processing of subplans. When such a failure takes place, the plan that is currently
being processed also fails. Thus, if a plan selected for the achievement of a given
goal fails, the default behaviour of an AgentSpeak agent is to conclude that the
goal that caused the plan to be adopted is not achievable. This control cycle is
illustrated in the diagram of Figure 1,1 and strongly couples plan execution to
goal achievement.

The control cycle of Figure 1 allows for situations in which the poor selection of
a plan leads to the failure of a goal that would otherwise be achievable through
a different plan in the plan library. While such limitations can be mitigated
through meta-level [8] constructs that allow goal addition events to cause the
execution of applicable plans in sequence, and the goal to fail only when all
plans fail, AgentSpeak still regards goal achievement as an implicit side-effect of
a plan being executed successfully.

3 Planning in an AgentSpeak Interpreter

In response to these limitations, we have created an extension of AgentSpeak that
allows an agent to explicitly specify the world-state that should be achieved by
the agent. In order to transform the world to meet the desired state, our extension
uses a propositional planner to form high-level plans through the composition
of plans already present in the agent’s plan library. This propositional planner
is invoked by the agent through a regular AgentSpeak action, and therefore
requires no change in the language definition. The only assumption we make is
the existence of plans that abide by certain restrictions in order to be able to
compose higher-level plans, taking advantage of planning capabilities introduced
in the interpreter.
1 For a full description of AgentSpeak, refer to d’Inverno et al. [7].

72 F. Meneguzzi and M. Luck

Find applicable plans

Push plan into Intentions

Process Intention

Goal FailedGoal Achieved

Goal addition/deletion

Applicable plan found

No plan found

Plan failed

Plan executed

Fig. 1. AgentSpeak control cycle

Whenever an agent needs to achieve a goal that involves planning, it uses a
special planning action that converts the low-level procedural plans of AgentS-
peak into STRIPS operators and invokes the planning module. If the planner
succeeds in finding a plan, it is converted back into a high-level AgentSpeak plan
and added to the intention structure for execution. Here, we liken the low-level
procedural plans of AgentSpeak to STRIPS operators, connecting the agent in-
terpreter to the planner by converting one formalism into the other and vice
versa. We have chosen to use STRIPS as the planning language in this paper for
simplicity reasons, and this approach would not lose applicability if one was to
use PDDL [9] (or another language) as the planning language.

3.1 The Planning Action

In order to describe the connection of the planning component with AgentSpeak,
we need to review the main constructs of this agent language. As we have seen,
an AgentSpeak interpreter is driven by events on the agent’s data structures
that may trigger the adoption of plans. Additions and deletions of goals and
beliefs are represented by the plus (+) and minus (−) sign respectively. Goals
are distinguished into test goals and achievement goals, denoted by a preceding
question mark (?), or an exclamation mark (!), respectively. For example, the
addition of a goal to achieve g would be represented by +!g. Belief additions and
deletions arise as the agent perceives the environment, and are therefore outside
its control, while goal additions and deletions only arise as part of the execution
of an agent’s plans.

In our approach, in addition to the traditional way of encoding goals for an
AgentSpeak agent implicitly as triggering events consisting of achievement goals

Composing High-Level Plans for Declarative Agent Programming 73

Table 1. Planner invocation plan

+goal conj(Goals) : true ← plan(Goals).

(!goal), we allow desires including multiple beliefs (b1, . . . , bn) describing a de-
sired world-state in the form goal conj([b1, . . . , bn]). An agent desire description
consists of a conjunction of beliefs the agent wishes to be true simultaneously at
a given point in time. The execution of the planner component is triggered by
an event +goal conj([b1, . . . , bn]) as shown in Table 1.

Now, the key to our approach to planning in AgentSpeak is the introduction of
a special planning action, denoted plan(G), where G is a conjunction of desired
goals. This action is bound to an implementation of a planning component,
and allows all of the process regarding the conversion between formalisms to be
encapsulated in the action implementation, making it completely transparent to
the remainder of the interpreter.

Planning Action

Create STRIPS Problem

Invoke Planner

Convert STRIPS Plan

Plan LibraryPlan Library

BeliefsBeliefs

Trigger Plan Execution

Intention StructureIntention Structure

plan(Goals)

(Strips Problem)

Planner succeeded

Planner failed

Plan Created

Trigger Added

Plan Executed

Plan Failed / Reassess Initial State

Fig. 2. Operation of the planning action

As illustrated in Figure 2, the internal action to plan takes as an argument
the desired world-state, and uses this, along with the current belief database and
the plan library, to generate a STRIPS [10] planning problem. This action then
invokes a planning algorithm; if a plan is found, the planning action succeeds,
otherwise the planning action fails. If the action successfully yields a plan, it
converts the resulting STRIPS plan into a new AgentSpeak plan to be added to
the plan library, and immediately triggers the adoption of the new plan. If the

74 F. Meneguzzi and M. Luck

Table 2. Movement plans

+!move to(A,B) : available(car)
← get(car);
drive(A,B).

+!move to(A,B) : ¬available(car)
← walk(A, B).

newly created plan fails, the planner may then be invoked again to try and find
another plan to achieve the desired state of affairs, taking into consideration any
changes in the agent beliefs.

It is important to note that the planning action is included in a standard
AgentSpeak plan with the same triggering condition as the plans generated by
it. Moreover, new plans are always added to the plan library before the plan that
executes the planning action. With this arrangement, previously-created plans
are consulted first when the interpreter searches for relevant plans, hence having
higher priority for execution, and if no such plan is found to be applicable, the
plan containing the planning action is invoked as the last remaining option.

3.2 Chaining Plans into Higher-Level Plans

The design of a traditional AgentSpeak plan library follows a similar approach
to programming in procedural languages, where a designer typically defines fine-
grained actions to be the building blocks of more complex operations. These
building blocks are then assembled into higher-level procedures to accomplish
the main goals of a system. Analogously, an AgentSpeak designer traditionally
creates fine-grained plans to be the building blocks of more complex operations,
typically defining more than one plan to satisfy the same goal (i.e. sharing the
same trigger condition), while specifying the situations in which it is applicable
through the context part of each plan. Here, we are likening STRIPS actions
to low-level AgentSpeak plans, since the effects of primitive AgentSpeak actions
are not explicitly defined in an agent description. For example, an agent that
has to move around in a city could know many ways of going from one place
to another depending on which vehicle is available to it, such as by walking or
driving a car, as shown in Table 2.

Modelling STRIPS operators to be supplied to a planning algorithm is similar
to the definition of these building-block procedures. In both cases, it is important
that operators to be used sequentially fit. That is, the results from applying one
operator should be compatible with the application of the possible subsequent
operators, matching the effects of one operator to the preconditions of the next
operator.

Composing High-Level Plans for Declarative Agent Programming 75

Once the building-block procedures are defined, higher-level operations must
be defined to fulfil the broader goals of a system by combining these building
blocks. In a traditional AgentSpeak plan library, higher-level plans to achieve
broader goals contain a series of goals to be achieved by the lower-level opera-
tions. This construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional planning system. By
doing the planning themselves, designers must cope with every foreseeable sit-
uation the agent might find itself in, and generate higher-level plans combining
lower-level tasks accordingly. Moreover, the designer must make sure that the
subplans being used do not lead to conflicting situations. This is precisely the
responsibility we intend to delegate to a STRIPS planner.

Plans resulting from propositional planning can then be converted into se-
quences of AgentSpeak achievement goals to comprise the body of new plans
available within an agent’s plan library. In this approach, an agent can still have
high-level plans pre-defined by the designer, so that routine tasks can be handled
exactly as intended. At the same time, if an unforseen situation presents itself
to the agent, it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

Clearly, lower-level plans defined by the designer can (and often will) include
the invocation of atomic actions intended to generate some effect on the envi-
ronment. Since the effects of these actions are not usually explicitly specified in
AgentSpeak (another example of reasoning delegated to the designer), an agent
cannot reason about the consequences of these actions. When designing agents
using our model, we expect designers to explicitly define the consequences of
executing a given AgentSpeak plan in terms of belief additions and deletions in
the plan body as well as atomic action invocations. The conversion process can
then ignore atomic action invocations when generating a STRIPS specification.

3.3 Translating AgentSpeak into STRIPS

Once the need for planning is detected, the plan in Table 1 is invoked so that
the agent can tap into a planner component. The process of linking an agent
to a propositional planning algorithm includes converting an AgentSpeak plan
library into propositional planning operators, declarative goals into goal-state
specifications, and the agent beliefs into the initial-state specification for a plan-
ning problem. After the planner yields a solution, the ensuing STRIPS plan is
translated into an AgentSpeak plan in which the operators resulting from the
planning become subgoals. That is, the execution of each operator listed in the
STRIPS plan is analogous to the insertion of the AgentSpeak plan that corre-
sponded to that operator when the STRIPS problem was created.

Plans in AgentSpeak are represented by a header comprising a triggering con-
dition and a context, as well as a body describing the steps the agent takes when
a plan is selected for execution. If e is a triggering event, b1, . . . , bm are belief
literals, and h1, . . . , hn are goals or actions, then e : b1& . . .&bm ← h1; . . . ; hn.
is a plan. As an example, let us consider a triggering plan for accomplishing
!move(A,B) corresponding to a movement from A to B, where:

76 F. Meneguzzi and M. Luck

– e is !move(A,B);
– at(A) & not at(B) are belief literals; and
– -at(A); +at(B). is the plan body, containing information about belief ad-

ditions and deletions.

The plan is then as follows:

+!move(A,B) : at(A) & not at(B)
<- -at(A);

+at(B).

When this plan is executed, it results in the agent believing it is no longer
in position A, and then believing it is in position B. For an agent to rationally
want to move from A to B, it must believe it is at position A and not already
at position B.

In the classical STRIPS notation, operators have four components: an iden-
tifier, a set of preconditions, a set of predicates to be added (add), and a set
of predicates to be deleted (del). For example, the same move operator can be
represented in STRIPS following the correspondence illustrated in Figure 3, in
which we convert the AgentSpeak invocation condition into a STRIPS operator
header, a context condition into an operator precondition, and the plan body is
used to derive add and delete lists.

Fig. 3. Correspondence between an AgentSpeak plan and a STRIPS operator

A relationship between these two definitions is not hard to establish, and we
define the following algorithm for converting AgentSpeak plans into STRIPS
operators. Let e be a triggering event, b1& . . .&bm a conjunction of belief liter-
als representing a plan’s context, and a1, . . . , an be belief addition actions and
d1, . . . , do be belief deletion actions within a plan’s body. All of these elements
can be represented in a single AgentSpeak plan. Moreover let opname be the
operator name and parameters, pre be the preconditions of the operator, add the
predicate addition list and del the predicate deletion list. Mapping an AgentS-
peak plan into STRIPS operators is accomplished as follows:

1. opname = e
2. pre = b1& . . . &bm

3. add = a1, . . . , an

4. del = d1, . . . , do

Composing High-Level Plans for Declarative Agent Programming 77

In Section 3.1 we introduced the representation of a conjunction of desired
goals as the predicate goal conj([b1, . . . , bn]). The list [b1, . . . , bn] of desires is
directly translated into the goal state of a STRIPS problem. Moreover, the initial
state specification for a STRIPS problem is generated directly from the agent’s
belief database.

3.4 Executing Generated Plans

The STRIPS problem generated from the set of operators, initial state and goal
state is then processed by a propositional planner. If the planner fails to gen-
erate a propositional plan for that conjunction of literals, the plan in Table 1
fails immediately and this goal is deemed unachievable, otherwise the result-
ing propositional plan is converted into an AgentSpeak plan and added to the
intention structure.

A propositional plan from a STRIPS planner is in the form of a sequence
op1, . . . , opn of operator names and instantiated parameters. We define a new
AgentSpeak plan in Table 3, where goal conj(Goals) is the event that initially
caused the planner to be invoked.

Table 3. AgentSpeak plan generated from a STRIPS plan

+goal conj (Goals) : true
←!op1; . . . ; !opn.

Immediately after adding the new plan to the plan library, the event
goal conj(Goals) is reposted to the agent’s intention structure, causing the gen-
erated plan to be executed. Plans generated in this fashion are admittedly simple,
since the development of a complete process of plan generalisation is not a trivial
matter since, for instance, it involves solving the issue of deriving the context
condition adequately. An extremely simple solution for this problem uses the en-
tire belief base of the agent as context for that plan, but this solution includes a
great number of beliefs that are probably irrelevant to the goal at hand, severely
limiting this plan’s future applicability.

Another solution involves replicating the preconditions of the first operator for
the new plan, but this could also lead the agent to fail to execute the plan later
on. We have developed an algorithm to derive a minimal set of preconditions,
which we omit here due to space constraints, showing instead the simple solution
of using a constantly true context. Another possible refinement to the conversion
of a STRIPS plan into an AgentSpeak plan is to allow the same generated plan
to be reused to handle side-effects of the set of goals that led to its generation.
For example, a plan for a conjunction of goals g can be used to achieve any
subset g′ of g.

78 F. Meneguzzi and M. Luck

In the ensuing execution of the generated plan, the fact that multiple con-
current plans might be stacked in an agent’s intentions structure must also be
addressed. There are multiple ways of addressing this issue, namely:

1. delegate the analysis and resolution of conflicting interaction between plans
to the designer;

2. implement provisions to ensure that the plans used by the planner process
are executed atomically;

3. drop the entire intention structure before plan adoption, invoking some for-
ward recovery plan, and prevent new intentions from being adopted during
plan execution; and

4. analyse the current intention structure and prospective plan steps during
planning to ensure they do not interfere with each other.

The first way to resolve concurrency problems, by delegating resolution to
the designer, is the traditional solution in an AgentSpeak context, but it is
clearly not acceptable, since the main goal of our extension is to diminish the
amount of designer tasks. On the other hand, the last alternative, avoiding plan
interference, involves the introduction of a complex analysis procedure to solve
a very limited number of potential conflicts. In the third option, an agent drops
its intentions to prevent concurrently executing plans from interfering with the
new plan, which was created without regard for the current intention structure.
This alternative requires the existence of forward recovery abort plans, such as
those described by Thangarajah et al. [11].

For our experiments we considered the second and third ways of dealing with
concurrency problems and, in the prototype described in Section 4, we opted to
enable the agent to execute dynamically generated plans atomically (by prevent-
ing other intentions from being selected from the stack while a dynamic plan is
being executed).

3.5 Coping with Failure

The possibility of generating new plans at runtime can also be used as an alter-
native when plans previously selected from the plan library have failed to achieve
a certain goal. Constructs for handling these failures are available in Jason [12]
and CANPLAN [11], and consist of associating an abort plan to be executed
when the plan selected to handle an event or goal fails. In Jason this construct
is expressed as a goal deletion (−!g). For example, in our system, when a newly
generated plan to achieve !goal conj([dg1, . . . , dgN]) fails, we can attempt to in-
voke the planner again to find an alternative plan to achieve these declarative
goals by including the plan shown in Table 4.

In addition, the application of our planning approach would be beneficial for
agents that use a more flexible commitment strategy, such as in the case of CAN-
PLAN2 [13]. In this architecture, multiple plan-library plans are attempted in
sequence, until either the agent interpreter concludes that the goal is impossible
or all known plans have failed. In these situations, an external planner can be

Composing High-Level Plans for Declarative Agent Programming 79

Table 4. Using the planner action to recover from plan failure

−!goal conj([dg1, . . . , dgN]) : true ← plan([dg1, . . . , dgN]).

invoked to try to generate new plans until it also finds that the desired goals are
impossible.

4 Experiments and Results

We have implemented the planning action described in Section 3 using Jason
[14], which is an open-source Java implementation of AgentSpeak that includes
a number of extensions, such as facilities for communication and distribution.
In addition to providing an interpreter for the agent language, Jason has an
object-oriented API for the development of actions available to the agents being
developed. Since planning is to be performed as part of a regular AgentSpeak
plan, the planning action encapsulates the conversion process of Section 3.3 using
Jason’s internal actions.

This implementation was used in a number of toy problems, such as the Blocks
world used with the original STRIPS planner [10], as well as some examples from
the AgentSpeak literature [3]. Solutions for these problems were created using
both a procedural approach characteristic of traditional AgentSpeak agents, and
a declarative one, in which high-level plans are omitted and left to be derived by
the planning system. This switch in the method for describing agents results in
a reduction of the plan description size, as it is no longer necessary to enumerate
relevant combinations of lower-level plans for the agent to be able to react to
different situations.

In terms of complexity the most computationally demanding part of our ar-
chitecture is the planning process, which can vary significantly depending on the
specific planner being used. The complexity of solving propositional planning
problems depends on the number of pre-conditions and post-conditions of the
operators in a certain domain [15], varying from polynomial to NP-complete and
PSPACE-complete complexity. On the other hand, the conversion process into
STRIPS is clearly very simple, having linear complexity on the number of pre-
conditions and post-conditions of the operators being converted. The same linear
complexity applies to the conversion from a STRIPS plan into an AgentSpeak
plan.

Rao [3] uses a simple example agent to describe the derivations performed by
an AgentSpeak interpreter. This agent detects when waste appears in a particular
road lane, and disposes of it in a waste bin. The original plan library for the agent
is as follows:

80 F. Meneguzzi and M. Luck

% Plan 1
+location(waste, X)

: location(robot,X) &
location(bin,Y)

<- pick(waste);
!location(robot,Y);
drop(waste).

% Plan 2
+!location(robot, X)

: location(robot,X)
<- true.

% Plan 3
+!location(robot, X)

: location(robot,Y) &
not X = Y &
adjacent(Y,Z)&
not location(car,Z)

<- move(Y, Z);
!location(robot, X).

Using Plan 1, whenever an agent detects waste in its current position, the
agent will pick up the waste, move to the location of the waste bin and drop
it. In this plan library, the agent’s movement is achieved by an internal action,
move(Y,Z), and the agent has no way of explicitly reasoning about it. Moreover,
if an agent has to perform multiple moves, recursive instantiations of Plan 3
in this library are stacked in the agent’s intention structure, until the recursion
stop condition is reached in Plan 2.

In order to be able to call a planner we need to modify the portion of the
plan library responsible for the agent’s movement (i.e. the last two plans) into
a declarative description yielding the following plan library:

+location(waste, X)
: location(robot, X) &

location(bin, Y)
<- pick(waste);

+goal_conj([location(robot,Y)]);
drop(waste).

+!move(X,Y)
: location(robot,X) &

not X = Y &
not location(car,Y) &

adjacent(X,Y)
<- -location(robot,X);

+location(robot,Y);
move(X,Y).

The new plan library includes a description of the preconditions and effects of
the move(X,Y) action. This is the action that is to be handled by the planning
process, and the agent derives the sequence of movements required to reach

Composing High-Level Plans for Declarative Agent Programming 81

the waste bin by desiring to be in the position of the bin. In order to specify
this desire, the plan to dispose of the waste includes a step to add the desire
+goal_conj([location(robot,Y)]), which causes the planner to be invoked.
Here, the atomic action to move(X,Y) is also included in the plan specification
so that when !move(X,Y) is invoked, the agent not only updates its beliefs about
the movement, but actually moves in the environment. Unlike the original plan
library, however, the agent can plan its movements before starting to execute
them, and will only start carrying out these actions if it has found the entire
sequence of movements required to reach the desired location.

5 Related Work

Work on the declarative nature of goals as a means to achieve greater auton-
omy for an agent is being pursued by a number of researchers. Here we consider
the approaches to declarative goals currently being investigated, namely those
of Hübner et al. (Jason) [16], van Riemsdijk et al. [17] and Meneguzzi et al.
[18]. There are multiple interpretations as to the requirements and properties of
declarative goals for an agent interpreter, and while some models consist of an
agent that performs planning from first principles whenever a goal is selected,
others argue that the only crucial aspect of an architecture that handles declar-
ative goals is the specification of target world states that can be reached using
the traditional procedural approach.

5.1 Jason

A notion of declarative goals for AgentSpeak that takes advantage of the context
part of the plans (representing the moment an implicit goal becomes relevant)
was defined by Hübner et al. [16], and implemented in Jason [14]. More specif-
ically, plans that share the same triggering condition refer to the achievement
of the same goal, so that a goal can only be considered impossible for a given
agent if all plans with the same triggering condition have been attempted and
failed. In this extended AgentSpeak interpreter, these plans are modified so that
the last action of every plan consists of testing for the fulfilment of the declared
goal, and then the plans are grouped and executed in sequence until one fin-
ishes successfully. A plan only succeeds if at the end of its execution an agent
can verify that its intended goal has been achieved. This approach retains the
explicitly procedural approach to agent operation (a pre-compiled plan library
describing sequences of steps that the agent can perform to accomplish its goals),
only adding a more robust layer for handling plan-failure.

5.2 X-BDI

X-BDI [19] was the first agent model that includes a recognisably declarative goal
semantics. An X-BDI agent is defined by a set of beliefs, a set of desires, and a
set of operators that manipulate the world. The agent refines the set of desires

82 F. Meneguzzi and M. Luck

through various constraints on the viability of each desire until it generates a set
containing the highest priority desires that are possible and mutually consistent.
During this process the agent selects the operators that will be applied to the
world in order to fulfil the selected desires in a process that is analogous to
planning. The key aspect of X-BDI is that desires express world-states rather
than triggers for the execution of pre-defined plans, leaving the composition of
plans from world-changing operators to the agent interpreter.

5.3 Formalisations of Declarative Goals

Several researchers have worked on a family of declarative agent languages and
investigated possible semantics for these languages [20,17]. All of these languages
have in common the notion that an agent is defined in terms of beliefs, goals
and capabilities, which are interpreted in such a way as to select and apply
capabilities in order to fulfil an agent’s goals. These approaches have evolved
from GOAL [20] into a declarative semantics very similar to that of X-BDI [19],
in which an agent’s desires express world-states which must be achieved by the
agent selection and application of capabilities.

5.4 Discussion

In addition to the models described in this section, variations of the way an agent
interpreter handles declarative goals have also been described. These approaches
advocate the use of fast propositional planners to verify the existence of a se-
quence of actions that fulfil a declarative goal [18]. The planning process in this
setting allows the consideration of the entire set of available operators to create
new plans, providing a degree of flexibility to the agent’s behaviour. Our research
has not dealt with multi-agent issues so far, but the approach taken by Coo-BDI
[21] to share plans between agents might provide an interesting extension to our
architecture. The exchange of new plans might offset the sometimes significant
time needed to create plans from scratch by allowing agents to request the help
of other planning-capable agents.

The approaches in Sections 5.1 and 5.3 deal with important aspects of declara-
tive goals in agent systems, such as the verification of accomplishment and logical
properties of such systems. However, support for declarative goals in Jason still
requires a designer to specify high-level plans, while the formalisms described
by van Riemsdijk lack any analysis of the practicality of their implementation.
Though X-BDI implements a truly declarative agent specification language, the
language is very far from mainstream acceptance, and the underlying logic sys-
tem used in X-BDI suffers from a stream of efficiency problems.

6 Concluding Remarks

In this paper we have demonstrated how the addition of a planning component
can augment the capabilities of a plan library-based agent. In order to exploit

Composing High-Level Plans for Declarative Agent Programming 83

the planning capability, the agent uses a special planning action to create high-
level plans by composing specially designed plans within an agent’s plan library.
This assumes no modification in the AgentSpeak language, and allows an agent
to be defined so that built-in plans can still be defined for common tasks, while
allowing for a degree of flexibility for the agent to act in unforseen situations.
Our system can also be viewed as a way to extend the declarative goal semantics
proposed by Hübner et al. [16], in that it allows an agent designer to specify only
desired world-states and basic capabilities, relying on the planning component
to form plans at runtime. Even though the idea of translating BDI states into
STRIPS problems is not new [18], our idea of an encapsulated planning action
allows the usage of any other planning formalism sufficiently compatible with
the BDI model.

Recent approaches to the programming of agents based on declarative goals
rely on mechanisms of plan selection and verification. However, we argue that
a declarative model of agent programming must include not only constructs for
verifying the accomplishment of an explicit world-state (which is an important
capability in any declarative agent), but also a way in which an agent designer
can specify only the world states the agent has to achieve and the description
of atomic operators allowing an underlying engine to derive plans at runtime.
In this paper we argue that propositional planning can provide one such engine,
drawing on agent descriptions that include atomic actions and desired states,
and leaving the derivation of actual plans for the agent at runtime.

The addition of a planning component to a BDI agent model has been recently
revisited by other researchers, especially by Sardiña et al. [22] and Walczak et al.
[23]. The former describes a BDI programming language that incorporates Hi-
erarchical Task Networks (HTN) planning by exploring the similarities between
these two formalisms, but this approach fails to address the fact that designers
must specify rules for HTN planning in the same way in which they would de-
compose multiple plans in a traditional BDI agent. The latter approach is based
on a specially adapted planner to support the agent, preventing the model from
taking advantage of novel approaches to planning.

The prototype implemented for the evaluation of the extensions described
in this paper has been empirically tested for a number of small problems, but,
further testing and refinement of this prototype is still required, for instance,
to evaluate how interactions between the addition of new plans will affect the
existing plan library. The system can also be improved in a number of ways
in order to better exploit the underlying planner component. For example, the
effort spent on planning can be moderated by a quantitative model of control,
so that an agent can decide to spend a set amount of computational effort into
the planning process before it concludes the goal is not worth pursuing. This
could be implemented by changing the definition of goal conj(Goals) to include
a representation of motivational model goal conj(Goals, Motivation), which can
be used to tune the planner and set hard limits to the amount of planning effort
devoted to achieving that specific desire.

84 F. Meneguzzi and M. Luck

As indicated above, the key contribution of this paper is a technique that
allows procedural agent architectures to use state-space (and hence, declarative)
planners to augment flexibility at runtime, thus leveraging advances in planning
algorithms. It is important to point out that previous efforts exploring the use
of HTN planning do not change the essential procedural mode of reasoning of
the corresponding agent architectures, as argued by Sardiña et al. [22]. State-
space planners operate on a declarative description of the desired goal state, and
our conversion process effectively allows a designer to use an AgentSpeak-like
language in a declarative way, something which previous planning architectures
do not allow. Finally, we are currently working on addressing some of the limi-
tations we have identified regarding the generation and execution of concurrent
plans for multiagent scenarios, considering the use of external imported plans
such as in Coo-AgentSpeak [24].

Acknowledgments. The first author is supported by Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES) of the Brazilian Ministry of
Education. We would like to thank Rafael Bordini and Jomi Hübner for their
support regarding the programming of AgentSpeak agents in their Jason im-
plementation, as well as the discussion of many issues regarding planning and
declarative goals.

References

1. Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning
and system control. IEEE Expert, Knowledge-Based Diagnosis in Process Engi-
neering 7(6), 33–44 (1992)

2. d’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS
Architecture: A Specification of the Distributed Multi-Agent Reasoning System.
Autonomous Agents and Multi-Agent Systems 9(1-2), 5–53 (2004)

3. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996)

4. van Riemsdijk, B., van der Hoek, W., Meyer, J.J.C.: Agent programming in dribble:
from beliefs to goals using plans. In: Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 393–400. ACM
Press, New York (2003)

5. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. In: Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations, vol. 15, Springer, Heidelberg (2005)

6. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings
of the First International Conference on Multiagent Systems, San Francisco, pp.
312–319 (1995)

7. d’Inverno, M., Luck, M.: Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation 8(3), 233–260 (1998)

8. Georgeff, M.P., Ingrand, F.F.: Monitoring and control of spacecraft systems us-
ing procedural reasoning. In: Proceedings of the Space Operations and Robotics
Workshop, Houston, USA (1989)

Composing High-Level Plans for Declarative Agent Programming 85

9. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

10. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

11. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Aborting tasks in BDI
agents. In: Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 8–15 (2007)

12. Bordini, R.H., Hübner, J.F.: Bdi agent programming in agentspeak using jason. In:
Toni, F., Torroni, P. (eds.) Computational Logic in Multi-Agent Systems. LNCS
(LNAI), vol. 3900, pp. 143–164. Springer, Heidelberg (2006)

13. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning.
In: Proceedings of the Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 16–23 (2007)

14. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E. (eds.) Multi-Agent Programming: Languages, Platforms and Applications, pp.
3–37. Springer, Heidelberg (2005)

15. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2), 165–204 (1994)

16. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Programming declarative goals using
plan patterns. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 123–140. Springer, Heidelberg (2006)

17. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals in
agent programming. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, pp.
133–140. ACM Press, New York (2005)

18. Meneguzzi, F.R., Zorzo, A.F., Móra, M.D.C.: Propositional planning in BDI agents.
In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia,
Cyprus, pp. 58–63. ACM Press, New York (2004)

19. Móra, M.d.C., Lopes, J.G.P., Vicari, R.M., Coelho, H.: BDI models and systems:
Bridging the gap. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS
(LNAI), vol. 1555, pp. 11–27. Springer, Heidelberg (1999)

20. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming
with declarative goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000.
LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

21. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity.
In: Leite, J.A., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS
(LNAI), vol. 2990, pp. 109–134. Springer, Heidelberg (2004)

22. Sardina, S., de Silva, L., Padgham, L.: Hierarchical Planning in BDI Agent Pro-
gramming Languages: A Formal Approach. In: Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
1001–1008. ACM Press, New York (2006)

23. Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W.: Augmenting BDI Agents
with Deliberative Planning Techniques. In: Programming Multi-Agent Systems,
4th International Workshop. LNCS, vol. 4411, pp. 113–127 (2006)

24. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-agentspeak: Cooper-
ation in agentspeak through plan exchange. In: Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pp.
696–705 (2004)

Satisfying Maintenance Goals

Koen V. Hindriks1 and M. Birna van Riemsdijk2

1 EEMCS, Delft University of Technology, Delft, The Netherlands
2 LMU, Munich, Germany

Abstract. A rational agent derives its choice of action from its beliefs
and goals. Goals can be distinguished into achievement goals and mainte-
nance goals. The aim of this paper is to define a mechanism which ensures
the satisfaction of maintenance goals. We argue that such a mechanism
requires the agent to look ahead, in order to make sure that the ex-
ecution of actions does not lead to a violation of a maintenance goal.
That is, maintenance goals may constrain the agent in choosing its ac-
tions. We propose a formal semantics of maintenance goals based on the
notion of lookahead, and analyze the semantics by proving some prop-
erties. Additionally, we discuss the issue of achievement goal revision, in
case the maintenance goals are so restrictive that all courses of action
for satisfying achievement goals will lead to a violation of maintenance
goals.

1 Introduction

The research presented in this paper concerns the role of maintenance goals in
the selection of actions by a rational agent. A rational agent aims at satisfying its
goals, which may include both achievement goals as well as maintenance goals.
Achievement goals define states that are to be achieved, whereas maintenance
goals define states that must remain true.

The distinction between achievement and maintenance goals is common in the
literature about rational agents. However, whereas various proposals for compu-
tational semantics and programming frameworks that include achievement goals
are available [3,5,11,14,17,18], maintenance goals have received less attention
[3,4,6]. In this paper we investigate a semantics for maintenance goals. Our aim
is to define a mechanism which ensures the satisfaction of maintenance goals
that can be integrated into various agent programming languages.

Achievement goals in agent programming frameworks are typically used in
combination with rules that express which action or plan an agent may execute
in certain circumstances in order to achieve a particular achievement goal. In
such a setting, achievement goals thus trigger the execution of a course of action.
A maintenance goal can have a similar role in agent programming frameworks,
in the sense that it can trigger an agent to perform actions in order to ensure
that a maintenance goal is not violated, or to take action to reestablish the
maintenance goal if it is violated.

Implementing maintenance goals using conditions to trigger the execution
of actions, however, is not sufficient to guarantee that maintenance goals are

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 86–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Satisfying Maintenance Goals 87

not violated. In order to prevent the violation of a maintenance goal, an agent
may sometimes have to refrain from performing an action that the agent would
otherwise have selected, e.g., to satisfy one of its achievement goals [6]. A com-
prehensive framework for maintenance goals should thus not only incorporate
an action selection mechanism based on triggering conditions, but should also
take into account the constraining role of maintenance goals. As we will show, a
selection mechanism that is based on this constraining role can also be used to
actively ensure that a maintenance goal is not violated.

We argue that taking into account the constraining role of maintenance goals
requires some kind of lookahead mechanism, which allows the agent to deter-
mine whether certain actions or plans it would like to perform might lead to
the violation of one of its maintenance goals. The main aim of this paper is
to investigate how the semantics of maintenance goals can be formally defined
through such a lookahead mechanism. We analyze the semantics formally by
proving several properties. It is important to note that one advantage of giving
a formal semantics, is the fact that one can formally prove certain properties.
This is important in order to get a clear understanding of the phenomenon under
investigation. Besides providing a formal semantics and analysis of maintenance
goals, we discuss the issue of achievement goal revision, in case the maintenance
goals are so restrictive that all plans for satisfying achievement goals will lead
to a violation of maintenance goals.

The paper is organized as follows. In Section 2, a motivating example is intro-
duced to illustrate the main ideas throughout the paper. Our investigations are
carried out in the context of the agent programming language GOAL [5], which
is briefly introduced in Section 3. The results presented, however, are general
and can be integrated into any agent framework. Section 4 formally defines a
lookahead mechanism that ensures selected actions do not violate the agent’s
maintenance goals. The look-ahead mechanism introduced, however, may over-
constrain an agent’s decision procedure. In Section 5 this problem is discussed
and a revision procedure is suggested to resolve it. Section 6 concludes the paper,
outlines some directions for future work, and discusses related work.

2 Motivating Example: A Carrier Agent

In this section, a simple scenario involving a carrier agent is presented in order
to illustrate the role of maintenance goals in action selection and the reasoning
we believe is involved in avoiding violation of maintenance goals.

2.1 The Basic Scenario

The setting is as follows. Consider an agent who wants to bring parcels from
some location A to a location B, using its truck. The distance between A and B
is too large to make it without refueling, and so, in order not to end up without
gas, the agent needs to stop every once in a while to refuel. The fact that the
agent does not want to end up without gas, can be modeled as a maintenance

88 K.V. Hindriks and M.B. van Riemsdijk

goal.1 This maintenance goal constrains the actions of the agent, as it is not
supposed to drive on in order to fulfil its goal of delivering the parcels, if driving
on would cause it to run out of gas.

The action of driving is an action that the agent can take in order to fulfil its
achievement goal of delivering the parcels. Other actions that the agent has at its
disposal, may be used to actively ensure that the agent’s maintenance goals are
not violated. In the example scenario, the action of refueling can be viewed as an
action of this kind (although, in this example, not violating the maintenance goal
is also instrumental for achieving the achievement goal). Maintenance goals thus
on the one hand constrain the agent’s actions, but may also induce the agent to
take preventive actions to make sure maintenance goals are not violated.

An essential reasoning mechanism in order to ensure that the agent does not
take actions that would violate the agent’s maintenance goals is a lookahead
mechanism. In the example scenario, the agent should reason about the distance
to the next gas station and the amount of fuel it has left, in order to make sure
it does not end up without fuel between two gas stations. That is, it should in
one way or another, reason about the consequences of possible future sequences
of actions in order to be able to choose those actions that will not lead to a
violation of maintenance goals at some point in the future.

2.2 Conflicts Between Achievement and Maintenance Goals

In this simple scenario so far, there is no conflict between the agent’s maintenance
goals and achievement goals. It is perfectly possible for the agent to deliver its
parcels without running out of gas, as long as it refuels in time. It may, however,
sometimes be the case that conflicts between achievement goals and maintenance
goals arise, in the sense that in order to achieve an achievement goal, the agent
will have to violate a maintenance goal.

In the example scenario, such a conflict may arise if the agent has the addi-
tional maintenance goal of making sure that the weight of truck load stays below
a certain threshold. Assuming that the total weight of the parcels exceeds this
threshold, and assuming that the agent cannot drive back and forth between
A and B (e.g., because the agent has loaned the truck and has to return it af-
ter arriving at location B), there is a conflict between the achievement goal of
bringing all the parcels from A to B, and not overloading the truck.

Such a situation of conflict may result in the agent not doing anything anymore
at a certain point. That is, it may be the case that any action the agent is able
to do to achieve its achievement goal is not allowed because this would lead to a
violation of the agent’s maintenance goal, and, moreover, there is no possibility
to actively ensure that the maintenance goal is not violated. In general, there
are several possibilities of dealing with such a situation.

The first option is not to do anything about it. The intuition here is that
the agent should never violate its maintenance goals, i.e., maintenance goals
are hard constraints, and the agent wants “all or nothing” when it comes to

1 Other papers [3,4,6] have used a similar maintenance goal in some of their examples.

Satisfying Maintenance Goals 89

its achievement goals. In the example scenario, it may be the case that it is of
utmost importance that the truck is not overloaded, e.g., because the truck has
a device with which the weight of the freight is measured, and if the weight
exceeds the threshold the truck cannot start. Moreover, it may be the case that
bringing the parcels only makes sense if all parcels are brought, e.g., because the
parcels contain parts of a closet and there is no use for bringing only part of the
closet. Put differently, the utility of delivering only part of the parcels is zero.

A second option is to allow the agent to violate its maintenance goals, if this
is absolutely necessary in order to achieve an achievement goal. An intuitive
implementation of such a mechanism would have to make sure that the agent
really only violates maintenance goals if there is no way around it, and if this
is necessary, it should try to “minimize” the violation, e.g., by trying to make
sure that the maintenance goal is satisfied again as soon as possible after the
achievement goal that was the reason to violate the maintenance goal has been
satisified. In the example scenario, it may be the case that overloading the truck
does not do too much harm, as long as this does not happen too often. It is then
important that the truck is unloaded as soon as the destination is reached.

The third option is to modify the achievement goal, such that the modified
achievement goal does not conflict anymore with the agent’s maintenance goals.
The idea here is that there might be achievement goals that can be achieved
“to a certain degree”, i.e., it might be possible to “weaken” the achievement
goal, in case it would conflict with a maintenance goal. In the example scenario,
the conflict between the achievement goal of getting all parcels at location A,
and the maintenance goal of not overloading the truck, could be resolved by
modifying the achievement goal such that the agent settles on bringing only
part of the parcels to location B. The decision of which parcels to leave behind
can be based on the weight of the parcels, i.e., the weight of the parcels to be
taken along should not exceed the threshold, and on the utility of getting certain
parcels at the destination, i.e., some parcels may be more important than others.

Of course, combinations of these possibilities of dealing with conflicts are
also possible. Such combinations might define certain maintenance goals as hard
constraints and certain achievement goals as “all or nothing” goals, while other
maintenance goals and achievement goals may be violated or modified, respec-
tively. In this paper, however, we focus on the third option, i.e., we view main-
tenance goals as hard constraints, and opt for the modification or weakening of
achievement goals in case a conflict with a maintenance goal arises. In domains
in which maintenance goals relate, e.g., to the limited availability of resources
and time which cannot easily be lifted the third strategy will typically be valid.

3 The GOAL Language

In this section, the GOAL programming language [5,10] is briefly introduced
and a GOAL agent that implements a simplified version of the carrier agent
of Section 2.1 is presented. A GOAL agent selects actions on the basis of its
beliefs and achievement goals, i.e., maintenance goals were not investigated in

90 K.V. Hindriks and M.B. van Riemsdijk

the original GOAL language. Whenever goals are mentioned in this section, this
should thus be interpreted as meaning achievement goals. The definitions we
provide in this section are used to make the notion of an agent computation
precise, which we use in Section 4 to define the semantics for maintenance goals.

A GOAL program for the carrier agent is specified in Table 1. The program
consists of four sections: (1) a set of initial beliefs, collectively called the (initial)
belief base of the agent, (2) a set of initial achievement goals, called the (initial)
goal base, (3) a program section which consists of a set of conditional actions, and
(4) an action specification that consists of a specification of the pre- and post-
conditions of basic actions of the agent. In the example, variables are used as
a means for abbreviation; variables should be thought of as being instantiated
with the relevant arguments to yield propositions. The constants used in the
example denote locations (a, ab1, ab2, b, assumed to be spatially positioned in
this order), parcels (p1,p2) and a truck truck. The order of the locations means
that if the agent wants to get from a to b, it first has to pass ab1, and then ab2.
We use the comma to denote conjunction.

Table 1. GOAL Carrier Agent

:beliefs{ loc(p1,a). loc(p2,a). loc(truck,a). loc(gasstation,ab1).
fuel(2). next(a,ab1). next(ab1,ab2). next(ab2,b). }

:a-goals{ loc(p1,b), loc(p2,b). }
:program{

if B(loc(truck,X), loc(P,X), X �=Y), G(loc(P,Y)) then load(P).
if B(loc(truck,a)), ∼(B(loc(P,a)), G(loc(P,b))), G(loc(R,b))

then adopt(loc(truck,b)).
if G(loc(truck,b)) then move.
if B(loc(gasstation,X)) then tank.
if B(loc(truck,X), in(P,truck)), G(loc(P,X)) then unload(P). }

:action-spec{
move { :pre{loc(truck,X), next(X,Y), fuel(Z), Z > 0}

:post{loc(truck,Y), not loc(truck,X), fuel(Z-1), not fuel(Z)} }
load(P) { :pre{loc(P,X), loc(truck,X)} :post{in(P,truck), not loc(P,X)} }
unload(P){ :pre{in(P,truck), loc(truck,X)} :post{loc(P,X), not in(P,truck)} }
tank { :pre{loc(truck,X), loc(gasstation,X), fuel(Y), Y<3}

:post{fuel(3), not fuel(Y)}} }

The belief base, typically denoted by Σ, and the goal base, typically denoted
by A, together define the mental state of a GOAL agent. Mental states should
satisfy a number of rationality constraints, which are introduced next.

Definition 1 (Mental States)
Assume a language of propositional logic L0 with the standard entailment rela-
tion |= and typical element φ. A mental state of a GOAL agent, typically denoted
by s, is a pair 〈Σ, A〉 with Σ, A ⊆ L0 where Σ is the belief base, and A with
typical element α is the goal base. Additionally, mental states need to satisfy
the following rationality constraints:

(i) The belief base is consistent: Σ �|= ⊥,
(ii) Individual goals are consistent2: for all α ∈ A: �|= ¬α,
(iii) Goals are not believed to be achieved: for all α ∈ A: Σ �|= α.

Satisfying Maintenance Goals 91

In the example carrier agent, the two parcels and the truck are initially believed
to be at location a, represented by loc(p1,a), loc(p2,a), and
loc(truck,a). The agent also believes it has two units of fuel, and that the
gas station is at location ab1. The initial achievement goal of the agent is to
have both parcels at location b, represented by loc(p1,b), loc(p2,b). Note
that the carrier agent satisfies the rationality constraints on mental states.

A GOAL agent derives its choice of action from its beliefs and goals. In order
to do so, a GOAL agent inspects its mental state by evaluating so-called mental
state conditions. The syntax and semantics of these conditions is defined next.

Definition 2 (Mental State Conditions)
The language LM of mental state conditions, typically denoted by ψ, is induc-
tively defined by the two clauses:

– if φ ∈ L0, then Bφ,Gφ ∈ LM ,
– if ψ1, ψ2 ∈ LM , then ¬ψ1, ψ1 ∧ ψ2 ∈ LM .

The truth conditions of mental state conditions ψ, relative to a mental state
s = 〈Σ, A〉, are defined by the following four clauses:

s |=m Bφ iff Σ |= φ,
s |=m Gφ iff there is α ∈ A such that α |= φ and Σ �|= φ,
s |=m ¬ψ iff s �|=m ψ,
s |=m ψ1 ∧ ψ2 iff s |=m ψ1 and s |=m ψ2.

The semantics of Bφ defines that this holds iff φ follows from the belief base
under a standard proposition logic entailment relation. The definition of the
semantics of Gφ is somewhat more involved. It specifies that Gφ holds, iff φ is
not already believed by the agent, and there is a formula in the goal base from
which φ follows. Also multiple goals are not required to be consistent which
reflects the fact that each goal may be realized at a different moment in time.

In GOAL, two types of actions are distinguished: basic actions and goal update
actions. The execution of basic actions updates and modifies the agent’s beliefs,
apart from changing the agent’s environment. Indirectly, a basic action may also
affect the goal base of an agent. That is, in case a goal is believed to be achieved
after action execution the goal is dropped by the agent and may be removed
from the agent’s goal base.

In the example program, the way in which the execution of basic actions
changes the beliefs of the agent is specified using pre- and post-conditions.
The example agent has four basic actions at its disposal, i.e., the actions move,
load(P), unload(P), and tank. Through the action move, it can move one posi-
tion towards location b. Using unload(P) and load(P), it can unload and load
the parcel P, respectively, if the agent is at the same location as the parcel. The
action tank can be executed if the agent is at location ab1, resulting in the
amount of fuel becoming 3.

In the formal definition of GOAL, we use a transition function T to model
the effects of basic actions. This function maps a basic action a and a belief

92 K.V. Hindriks and M.B. van Riemsdijk

base Σ to an updated belief base T (a, Σ) = Σ′. The transition function is
undefined if an action is not enabled in a mental state. In a GOAL agent, the
action specification section of that agent specifies this transition function. In the
example agent in Table 1 a STRIPS-like notation is used, where positive literals
define the add list and negative literals define the delete list (cf. [12]). (Other,
extended action formalisms could be used but for the purpose of this paper a
more extended formalism is not needed.) GOAL has two built-in goal update
actions: the adopt(φ) action to adopt a goal, and the drop(φ) to drop goals
from the agent’s goal base. An adopt(φ) action has to satisfy the rationality
constraints on mental states, i.e. φ must be consistent and not believed by the
agent. The drop(φ) action removes all goals from the goal base that imply φ.

Definition 3 (Mental State Transformer M)
Let a be a basic action, φ ∈ L0 and T be a transition function for basic actions.
Then the mental state transformer function M is defined as a mapping from
actions and mental states to updated mental states as follows:

M(a, 〈Σ, A〉) =
{

〈Σ′, A \ {ψ | Σ′ |= ψ}〉 if T (a, Σ) = Σ′

undefined otherwise

M(adopt(φ), 〈Σ, A〉) =
{

〈Σ, A ∪ {φ}〉 if �|= ¬φ and Σ �|= φ
undefined otherwise

M(drop(φ), 〈Σ, A〉) = 〈Σ, A \ {ψ ∈ A | ψ |= φ}〉

In order to select the appropriate actions to achieve the goal of having the
two parcels at location b, our example carrier agent has five conditional actions
as listed in the program section of Table 1. A conditional action c has the form
if ψ then a, with a either a basic action or a goal update action. This conditional
action specifies that a may be performed if the mental state condition ψ and the
preconditions of a hold. In that case we say that conditional action c is enabled.

During execution, a GOAL agent selects non-deterministically any of its en-
abled conditional actions. This is expressed in the following transition rule, de-
scribing how an agent gets from one mental state to another.

Definition 4 (Conditional Action Semantics)
Let s be a mental state, and c = if ψ then a be a conditional action. The
transition relation c−→ is the smallest relation induced by the following transition
rule.

s |= ψ M(a, s) is defined

s
c−→ M(a, s)

The execution of a GOAL agent results in a computation. We define a computa-
tion as a sequence of mental states, such that each mental state can be obtained
from the previous by applying the transition rule of Definition 4. As GOAL
agents are non-deterministic, the semantics of a GOAL agent is defined as the
set of possible computations of the GOAL agent, where all computations start
in the initial mental state of the agent.

Satisfying Maintenance Goals 93

Definition 5 (Agent Computation)
A computation, typically denoted by t, is an infinite sequence of mental states
s0, s1, s2, . . . such that for each i there is an action ci and si

ci−→ si+1 can be
derived using the transition rule of Definition 4, or si � ci−→ and for all j > i,
sj = si. The meaning SA of a GOAL agent named A with initial mental state
〈Σ0, A0〉 is the set of all computations starting in that state.

Observe that a computation is infinite by definition, even if the agent is not able
to perform any action anymore from some point in time on. Also note that the
concept of an agent computation is a general notion in program semantics that
is not particular to GOAL. The notion of a computation can be defined for any
agent programming language that is provided with a well-defined operational
semantics. For such languages, it is possible to transfer the analysis of mainte-
nance goals in this paper that is based on the notion of a computation and to
incorporate the proposed maintenance goal semantics.

Our example carrier agent may execute the following computations. In the
initial mental state, the conditional action for loading a parcel is executed, and
the agent non-deterministically picks up one of the parcels, followed by another
execution of this conditional action to load the other parcel. Consecutively, the
only enabled conditional action is the one for adopting the goal loc(truck,b),
by which the example agent adopts the goal to be at location b. As the agent
now has the goal to be at location b it will execute the enabled action move.
After executing the move action, the agent is at location ab1, and has one unit
of fuel left.

In this situation, there are two possibilities. The agent can execute another
move action, after which the agent will be at location ab2 without any fuel.
The other option is that the agent executes the tank action, after which the
agent will have three units of fuel while still being at location ab1. If the agent
chooses the first option, it will get stuck at ab2, as it has no fuel and there is
no possibility to tank. If the agent chooses the second option, it can execute
two move actions after tanking and get to location b. Then the only option is to
execute the conditional action for unloading parcels two times, after which the
achievement goal of having the parcels at location b is reached.

4 Semantics of Maintenance Goals

In this section, we define the semantics of a GOAL agent if this agent is given
a set of maintenance goals to satisfy. In defining the operational semantics for
maintenance goals, the idea is that agents reason about the result of the execu-
tion of their actions, in order to make sure that only those actions are chosen
that do not violate the agent’s maintenance goals. That is, agents look ahead
in order to foresee the consequences of their actions. Adding maintenance goals
that may have a constraining role makes sense only if the original agent is under-
specified, that is, if alternative courses of action are available, as in the case of
GOAL agents. Only then can the agent actually choose to take actions that do

94 K.V. Hindriks and M.B. van Riemsdijk

not violate maintenance goals. Intuitively, the idea is thus that the incorporation
of maintenance goals leads to the exclusion of (parts of) computations that were
allowed in the agent semantics of Definition 5 without maintenance goals.

In the example program of Section 3, we have seen that the carrier agent gets
stuck at location ab2 if it does not tank at location ab1. The idea is that such
behavior can be prevented by introducing a maintenance goal that expresses
that the agent should not be in a situation where it has no fuel left (Table 2).

Table 2. Extension With Maintenance Goals

:m-goals{ fuel(X), X > 0. }

Syntactically, the introduction of maintenance goals thus poses no problems.
Incorporating maintenance goals in the semantics, however, is more involved and
is the subject of the remainder of this section. In Section 5 we look at the case
that maintenance and achievement goals cannot be satisfied simultaneously.

4.1 Operational Semantics of Maintenance Goals

Ideally, an agent should look ahead infinitely far into the future, in order to be
absolutely sure that it does not choose a path that will lead to the violation
of a maintenance goal. In practice, however, infinite lookahead cannot be im-
plemented, and presumably it will neither be necessary. We propose a general
definition of lookahead, that takes the number of steps that an agent may look
ahead as a parameter. This parameter is called the lookahead range.

In the following, Ω ⊆ L0 will denote a set of maintenance goals. A set of
maintenance goals will be assumed to be consistent, i.e., Ω �|= ⊥. If maintenance
goals are hard constraints, it is not rational to have two maintenance goals that
are inconsistent, as it will never be possible to satisfy both maintenance goals.
Moreover, we assume that maintenance goals are satisfied initially, i.e., it should
be the case that for the initial belief base Σ0 we have Σ0 |= Ω (where Σ0 |= Ω
abbreviates ∀ω ∈ Ω : Σ |= ω). Also, we take the set of maintenance goals as
being static. That is, an agent cannot drop or adopt new maintenance goals.
Although there might be situations where one would want to consider dropping
or adopting maintenance goals, we think that maintenance goals are intuitively
more stable than achievement goals as the former express a kind of background
requirements that an agent should always fulfill.

In order to provide a formal definition of the effect of n-step lookahead on the
computations of an agent, we first introduce some additional terminology and
notation. A prefix of a computation t is an initial finite sequence of t or t itself.
A prefix of length n of a computation t is denoted by t〈n〉 with n ∈ N ∪ {∞},
where t〈∞〉 is defined as t. N is the set of natural numbers including 0, and ∞
is the first infinite ordinal. We write p � p′ to denote that p is a prefix of p′.
The order � is lifted to sets as follows: S � S′ iff each p ∈ S is a prefix of some
p′ ∈ S′. A set S of sequences is called a chain if for all p, p′ ∈ S we have either

Satisfying Maintenance Goals 95

p � p′ or p′ � p. The least upper bound of a chain S is denoted by
S. In case of
a set S of prefixes of a computation t,
S is either a maximal element in S (i.e.
a prefix that has the greatest finite length), or the computation t itself (which
need not be in S); moreover,
∅ = ε with ε the empty sequence. Finally, s ∈ p
for s a mental state and p a prefix of a computation abbreviates that s is a state
on the prefix p; sometimes si is used to denote the ith state in the sequence.

Now we are in a position to formally define how maintenance goals, given
an n-step lookahead operator �n, restrict the possible computations of an agent
A. First, we define the notion of a safe prefix of a computation t, given a set
of maintenance goals Ω and the capability to do a lookahead of n steps. The
predicate safen(p, Ω), with n ∈ N ∪ {∞}, is true if all states of the prefix p
of computation t satisfy the maintenance goals Ω and, in the next n steps of
computation t no violation of such a goal will occur, except possibly for the
last state. (Note that we leave the computation t implicit in safen(p, Ω).) This
corresponds with the behavior of a very cautious agent that will avoid to go in a
direction that may lead towards a violation of a maintenance goal. Formally, we
define safen(ε, Ω) to be false for technical reasons, and we define safen(t〈k〉, Ω)
for prefixes of non-zero length k > 0 as follows:

safen(t〈k〉, Ω) iff ∀s ∈ t〈k+n−1〉(Σs |= Ω).

When the set of maintenance goals Ω is clear from the context, we also simply
write safen(t〈k〉). All states on a safe prefix of a computation t based on n-step
lookahead have the property that lookahead does not predict any violations of
a maintenance goal in Ω in less then n steps. Note that there is at least one
non-empty safe prefix including the initial state using 0-step lookahead since a
goal agent initially must believe that its maintenance goals are satisfied. The set
of all safe prefixes of computation t is denoted by Safen(t, Ω). Note that the set
Safen(t, Ω) is a chain and has a least upper bound, which is the computation t
itself when all prefixes of t are safe.

The n-step lookahead operator �n applied to a computation t and a set of
maintenance goals Ω can now be defined in terms of safe prefixes. Using this
operator it is easy to define the effect of maintenance goals as hard constraints
on the behavior of an agent with an n-step lookahead capability: The semantics
SA of an agent without such goals, i.e. its associated set of computations, is
restricted by applying the lookahead operator to each computation in SA to
ensure that an agent with such lookahead capabilities will act cautiously and
will never head towards a predicted violation of one of its maintenance goals.

Definition 6 (Lookahead Operator and Semantics of Maintenance Goals)
The n-step lookahead operator �n, applied to a computation t and a set of
maintenance goals Ω, is defined as the least upper bound of the set of safe
prefixes of t with respect to Ω, and is also lifted to sets of computations.

– The n-step lookahead operator �n is defined as: t�nΩ =
Safen(t, Ω).
– The lift of �n to a set S is defined by:

S�nΩ =
⋃

t∈S

{t�nΩ |∀t′ ∈ S : t�nΩ � t′�nΩ ⇒ t�nΩ = t′�nΩ}

96 K.V. Hindriks and M.B. van Riemsdijk

– Let A be an agent with an n-step lookahead capability. Then the semantics
of A with a set of maintenance goals Ω is defined as: SA�nΩ.

The lift of �n to a set S is the set of all maximal elements of the set
⋃

t∈S t�nΩ.
Only the maximal elements are taken in order to exclude prefixes p that are a
strict prefix of another prefix p′ in this set, i.e., p ≺ p′. The semantics SA�nΩ
for an agent A with maintenance goals Ω thus specifies that the agent continues
until all further action would lead to a violation within n steps. Note that the
set SA�nΩ may be empty when the set of maintenance goals Ω is so restrictive
that each computation would violate a maintenance goal within n steps.

4.2 Properties

The following proposition says that a lookahead capability with a bigger looka-
head range than another one is more restrictive than the latter. Since the seman-
tics implements a cautious strategy towards possible violations of maintenance
goals, an agent that detects such potential violations sooner, will act cautiously
and will not follow a course of action that may lead to this violation.

Proposition 1. If n > m, then SA�nΩ � SA�mΩ.

The proposition suggests that agents with a more powerful lookahead capability,
i.e. with a greater lookahead range, possibly are able to satisfy fewer achievement
goals than they would be able to satisfy with a less powerful lookahead capability.
That is, an agent that does everything to avoid maintenance goal violation will
not allow itself to achieve a highly valued goal on a path that will lead to such
a violation. Such computation paths may be excluded by the the more powerful
lookahead capability while still being allowed by the weaker one.

For the idealized situation where an agent has infinite lookahead, we have the
following proposition.

Proposition 2. (Infinite Lookahead Maintenance Goal Semantics)

SA�∞Ω = {t ∈ SA | ∀s ∈ t : Σs |= Ω}
This proposition states that an agent with infinite lookahead will only execute
a computation that is completely free of maintenance goal violations. For the
example carrier agent, if we assume infinite lookahead, any computation where
the agent does not tank at location ab1 are excluded from the semantics. The
reason is that in these computations the agent will violate its maintenance goal
as it will be at location ab2 without any fuel.

Although the infinite lookahead semantics is elegant and captures intuitions in
a simple manner, such lookahead cannot be implemented. In the next proposition
we look at bounded lookahead where lookahead ranges are less than ∞.

Proposition 3. (Bounded Lookahead Maintenance Goal Semantics)
Let n ∈ N. The n-step lookahead semantics SA�nΩ is equal to:

⋃

t∈SA

{p ≺ t |safen(p) & (∀p′, t′ : p � p′ ≺ t′ & safen(p′) ⇒ p = p′)} ∪ SA�∞Ω

Satisfying Maintenance Goals 97

Corollary 1. (One-Step Lookahead Maintenance Goal Semantics)
The one-step lookahead semantics SA�1Ω of an agent A is equal to:

⋃

t∈SA

{p ≺ t | (∀s ∈ p : Σs |= Ω) & (∀t′ : p ≺ t′ & sk+1 ∈ t′ ⇒ Σsk+1 �|= Ω)}

∪ SA�∞Ω

Bounded lookahead implies that the agent may choose a path which inevitably
will violate a maintenance goal because potential violations of the maintenance
goal lie outside of the agent’s lookahead range. As discussed above, it might be
the case that on such a path an achievement goal is achieved that would never
have been achieved if the agent would have had a greater lookahead range that
would have predicted these violations. Note, however, that the fact that an agent
takes a path on which it would violate a maintenance goal if it would continue
still does not lead to violation of a maintenance goal. The reason is that the
agent will be required to stop acting as soon as there are only actions enabled
that would lead to a violation of a maintenance goal. This is in line with our
assumption that maintenance goals are hard constraints.

In our example carrier agent it is sufficient to have a lookahead of one. As
stated in Corollary 1, an agent with a lookahead range of one continues acting
until it recognizes that by doing so at all possible next states it violates a mainte-
nance goal. The carrier agent with a lookahead of one will be able to detect that
if it executes a move action at location ab1 before tanking, it will immediately
violate its maintenance goal and will select the alternative action of tanking as
a result. This illustrates that the lookahead mechanism, which primarily con-
strains the actions of the agent, may also induce the agent to actively prevent
the violation of maintenance goals (in the example realized through tanking).
To be more accurate, our mechanism does not distinguish between preventive
actions that should prevent the violation of an achievement goal, and actions
that are executed to fulfill achievement goals. As we can see in this example,
in practice a very limited lookahead range may already be sufficient to prevent
the agent from taking a path that would lead to violation of maintenance goals.
To be more specific, the semantics of the example agent with lookahead range of
one is equal to the semantics with lookahead range ∞. In general, the minimally
needed lookahead range should be derived from available domain knowledge.

In this simple example, it is not difficult to modify the GOAL program in
such a way that the desired behavior is obtained without explicitly incorporating
maintenance goals. One could, e.g., add a condition to the conditional action for
moving, specifying that if the agent is at location ab1, it may not move unless its
tank is full. We argue, however, that the explicit incorporation of maintenance
goals in the GOAL program provides a separation of concerns, and thereby
potentially yields more transparent and easier to verify agent programs.

It is interesting to investigate under what circumstances bounded lookahead
is guaranteed to be sufficient to avoid violation of maintenance goals. One par-
ticular such case is the case that an agent can undo actions, that is, if it
has a rollback mechanism to go back to a previous state. In the presence of
such a rollback mechanism, a bounded lookahead of 1 is sufficient to satisfy all

98 K.V. Hindriks and M.B. van Riemsdijk

maintenance goals. Obviously, the ability to rollback combined with 1 step looka-
head will not be sufficient in all cases to realize the agent’s achievement goals.
The combination does allow the agent, however, to continue any computation
given that at least one action is enabled. For our purposes, we model such a
rollback mechanism simply by adding for each transition s → s′ the inverse
transition s′ → s to the agent semantics.

Theorem 1. (Lookahead of One Sufficient with Rollback Mechanism)
For agents that can do at least one action initially without violating a mainte-
nance goal, and that have a rollback mechanism to undo arbitrary actions, that
is, are able to reverse a computation step s → s′ by performing the step s′ → s,
we have the following:

SA�1Ω = SA�∞Ω

Proof. The main observation needed in the proof is that any finite, safe prefix
can be continued without violating a maintenance goal by doing either a “regular”
action or otherwise by doing an “undo” action. By assumption, the agent can
at least do one action initially, and so any finite safe prefix can be extended to
a complete computation that does not violate a maintenance goal.

Although Theorem 1 shows that an agent will always be able to continue pur-
suing its goals, it does not state that it will also achieve these goals if possible.
In the presence of a rollback mechanism, computations that make no progress
but instead repeatedly have to recover from performing an action that leads to a
violation of a maintenance goal are included in the set SA�∞Ω. What is missing
is a notion of fairness that would prevent such repeated execution of a part of
the computation (cf. [7]). Fairness is included in the original GOAL semantics
but is not discussed further in this paper (cf. [5]). Intuitively, moreover, by us-
ing lookahead of more than one step computations that require rollback can be
detected sooner which will reduce the need for such rollbacks.

5 Detecting and Revising Goal Conflicts

In this section an algorithm is presented that implements the maintenance goal
semantics and, additionally, it includes an extension that provides the agent
with the option to revise its achievement goals in case no achievement goal is
reachable without choosing a path that would lead to violation of a maintenance
goal. As discussed in Section 2.2, revising achievement goals is a way of dealing
with conflicts between maintenance goals and achievement goals, if maintenance
goals are taken as hard constraints. Revision of achievement goals is not the
main subject of this paper (see e.g. [9]), but we will illustrate the main ideas
using the carrier agent example.

The first step to implement the semantics for maintenance goals based on
lookahead is to define an algorithm which is able to detect potential future
maintenance goal violations. The algorithm depicted in Table 3 implements the
detection of such violations as well as the cautious strategy of an agent that

Satisfying Maintenance Goals 99

Table 3. Action Selection Algorithm Including Maintenance Goals

Function SelectAction(E, s, n)
Input: A set of enabled conditional actions E, a state s, a lookahead range n
Output: A selected conditional action c, or skip
1. actionOkSet ← ∅
2. for each c ∈ E
3. do conflict[c]← ConflictSets(c, s, n)
4. if ∅ ∈ conflict[c] then actionOkSet ← actionOkSet ∪ {c}
5. if actionOkSet �= ∅
6. then return ChooseAction(actionOkSet)
7. else c′ ← SelectActionWithMinimalConficts(E, conflict)
8. ReviseConflictingAchievementGoals(conflict[c′])
9. (∗ do nothing and recompute enabled actions using revised achievement goal(s) ∗)
10. return skip

Function ConflictSets(c, s, n)
Input: A conditional action c, a state s, and a lookahead range n
Output: The conflict sets of c
1. if n ≤ 0
2. then return {∅} (∗ Indicates that at least one path is ok. ∗)
3. else S ← SuccessorStates(c, s)
4. for each s′ ∈ S
5. do cset← ∅ (∗ Conflict set ∗)
6. if Σs′ �|= Ω
7. then cset← cset ∪ {ReasonConflict(c)}
8. else E ← ComputeEnabledActions(s′)
9. for each c′ ∈ E
10. do cset ← cset ∪ ConflictSets(c′, s′, n− 1)
11. return cset

avoids taking a path that would lead to violation of a maintenance goal. The
function SelectAction computes for each enabled conditional action whether
it might result in any conflicts with or violations of maintenance goals for a given
lookahead range n. In case executing an action does not inevitably lead to such
a conflict, it is added to the set of actions that are ok to select for execution.
Only if there are no actions that are “safe” in this sense, the action selection
algorithm will select an achievement goal in order to revise it. The detection of
these conflicts is done through the function ConflictSets. This function recur-
sively computes the so-called conflict sets, which will be explained in more detail
below. An empty conflict set indicates that no future violation of a maintenance
goal within lookahead range is detected.

As discussed in Section 2.2, detected conflicts between achievement goals and
maintenance goals may cause the agent not to do anything at a certain point,
as it might be the case that any action would lead to a future violation of a
maintenance goal. In the example scenario, adding a weight constraint that
expresses that the truck cannot carry a load that weighs more than a certain
threshold, has this effect if the sum of the weight of the two parcels is higher than
the threshold (see Table 4, where weightTotal(N) computes the total weight of
the parcels in the truck).

If at least a lookahead of two is used, the agent will not be able to execute any
action in the initial mental state. After loading either one of the parcels, loading
the other one would lead to a violation of the weight maintenance goal. With the

100 K.V. Hindriks and M.B. van Riemsdijk

Table 4. GOAL Carrier Agent

:beliefs{ ... weight(p1,3). weight(p2,2). threshold(4). weightTotal(N) :- ... }
:a-goals{ loc(p1,b), loc(p2,b). }
:m-goals{ fuel(X), X > 0. weightTotal(T), threshold(W), T<W. }

cautious strategy, taking a path on which the violation of a maintenance goal is
foreseen within two steps, is not an option (note that the agent can only unload
parcels at location b).

In this case where the agent cannot execute any action as this would lead to
violation of maintenance goals, the algorithm of Table 3 allows the revision of
achievement goals by means of lowering ones ambitions. The idea here is that
actions are induced by achievement goals and these actions thus may be pre-
vented from being taken by revising those goals (we disregard the possibility
of incorrect beliefs, which might instead require an agent to revise its beliefs).
In order to revise its achievement goals the agent needs more information to
base the revision on and to this end the notion of a conflict set is introduced.
A conflict set is an achievement goal α which has been identified as a poten-
tial reason for the violation of a maintenance goal. In general, identifying such
a reason may involve complicated diagnostic reasoning, but in GOAL a more
pragmatic solution is available. In GOAL, goal conditions are typically associ-
ated with the selection of actions and we can simply take these conditions as the
reason why a maintenance goal is violated. In our example agent, the function
ReasonConflict(c) extracts an instance of the goal condition loc(P,b) as a
reason for the violation of the maximum weight loaded. The function Revise-

ConflictingAchievementGoals then may revise the achievement goal in the
goal base and drop one of the conjuncts to avoid the violation. Consecutively,
the agent verifies again if the maintenance goal violation has been eliminated. If
no reason can be identified in this way, # is returned to indicate a violation of
a maintenance goal.

6 Conclusion and Related Work

In this paper, we have looked at a mechanism for agents to handle mainte-
nance goals. In particular, we have proposed a formal semantics of maintenance
goals based on the notion of lookahead, and we have analyzed the semantics by
proving some properties, in order to gain a better understanding of the role of
maintenance goals in action selection. We presented an algorithm for detecting
maintenance goal violation, parametrized by a variable lookahead range in order
to be able to control computational costs. Additionally, we have discussed the is-
sue of achievement goal revision, in case the maintenance goals are so restrictive
that all courses of action for satisfying achievement goals will lead to a violation
of maintenance goals.

There are several interesting directions for future research. Regarding the revi-
sion of achievement goals, several issues have remained unexplored. For example,

Satisfying Maintenance Goals 101

we have suggested one possible way of determining that an achievement goal
conflicts with a maintenance goal. In future research, we plan to investigate
this approach and possible alternatives in more detail. One research direction in
this respect is the investigation of existing techniques for determining whether
achievement goals conflict with each other [16,15,13]. It will need to be investi-
gated whether the issue of conflicts between maintenance goals and achievement
goals is the same as or similar to the issue of conflicts between achievement goals.

Existing approaches for defining preferences over goals, such as in utility the-
ory [1], may be useful to refine the strategy for revising achievement goals. Intu-
itively, an agent should revise its achievement goals in such a way that they are
reachable without violating maintenance goals, and the revision should maximize
the agents expected utility. Moreover, in this paper we have taken maintenance
goals as hard constraints, and have suggested to revise achievement goals in case
they conflict with the agent’s maintenance goals. Alternatively, it could be al-
lowed to violate maintenance goals under certain circumstances. Again utility
theory could be useful here, in order to weigh the violation of a maintenance
goal against the realization of an achievement goal. For example, negative util-
ity could be associated with the violation of a maintenance goal assigning a
maintenance goal that defines a hard constraint e.g. as having infinitely neg-
ative utility. The work in [8] on qualitative preferences in agent programming
could also be relevant here. There are also some similarities with the planning
literature on oversubscription (e.g. [2]), but as with planning approaches in gen-
eral the main difference is that GOAL agents check violations of maintenance
goals while executing actions.

Regarding related work on maintenance goals, we discuss the approach fol-
lowed in the Jadex framework [3], the language presented by Dastani et al. [4],
and the work of Duff et al. [6]. These approaches can be categorized into ap-
proaches that use maintenance goals as a trigger for the execution of actions, and
approaches that use some mechanism for reasoning about the result of action
execution in order to prevent maintenance goals from being violated. Jadex uses
maintenance goals to trigger the execution of actions in case the maintenance
goal is violated. In the framework of Dastani et al., a trigger condition is used to
determine when action is needed to prevent the violation of maintenance goals.
In our approach and in the framework of Duff et al., a reasoning mechanism is
used in order to prevent maintenance goals from being violated.

One of the main differences between the work of Duff et al. and our work is that
in Duff et al. it is determined before an achievement goal is pursued whether the
plans for achieving this achievement goal may conflict with one of the agent’s
maintenance goals. In our work, by contrast, we propose to use a lookahead
mechanism for keeping maintenance goals from being violated during pursuit of
achievement goals. We also suggested the possibility to revise achievement goals
when they cannot be realized without violating maintenance goals, while Duff
et al. propose to not adopt such achievement goals to avoid the risk of violating
maintenance goals. The approaches also differ in that in this paper a mechanism

102 K.V. Hindriks and M.B. van Riemsdijk

to ensure satisfaction of maintenance goals is based on a semantic analysis and
Duff et al. validate their work using an experimental approach.

Finally, an advantage of doing lookahead during achievement goal pursuit, we
believe, is that it may provide for more flexible agent behavior. An approach
based on executing a preventive plan that is associated with the maintenance
goal in case an achievement goal might conflict with a maintenance goal, as
proposed in Duff et al., does not seem to leave the agent with as many options
as are possible. Moreover, such an approach still does not guarantee that the
consecutive pursuit of the achievement goal will not violate the maintenance
goal. The approach of Duff et al. can be compared with planning approaches,
in the sense that reasoning takes place before execution. If something is about
to go wrong during execution, this is not detected. In our approach, the agent
pursues achievement goals, but takes any measures that it has at its disposal if
this is necessary to prevent a maintenance goal from being violated.

References

1. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of AI Research 11, 1–94 (1999)

2. Brafman, R.I., Chernyavsky, Y.: Planning with goal preferences and constraints.
In: Proceedings of ICAPS 2005 (2006)

3. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI
agent systems. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.)
ProMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005)

4. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Goal types in agent program-
ming. In: Mehdi Dastani, M. (ed.) ECAI 2006. Proceedings of the 17th European
Conference on Artifical Intelligence. Frontiers in Artificial Intelligence and Appli-
cations, vol. 141, pp. 220–224. IOS Press, Amsterdam (2006)

5. de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.C.: A Verification
Framework for Agent Programming with Declarative Goals. Journal of Applied
Logic (2006)

6. Duff, S., Harland, J., Thangarajah, J.: On Proactivity and Maintenance Goals.
In: AAMAS 2006. Proceedings of the fifth international joint conference on au-
tonomous agents and multiagent systems, Hakodate, pp. 1033–1040 (2006)

7. Francez, N.: Fairness. Springer, Heidelberg (1986)
8. Fritz, C., McIlraith, S.A.: Decision-theoretic golog with qualitative preferences. In:

KR, pp. 153–163 (2006)
9. Gardenfors, P.: Belief Revision. In: Cambridge Computer Tracts, Cambridge Uni-

versity Press, Cambridge (1992)
10. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent Program-

ming with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL
2000. LNCS (LNAI), vol. 1986, pp. 228–243. Springer, Heidelberg (2001)

11. Hübner, J.F., Bordini, R.H., Wooldridge, M.: Declarative goal patterns for AgentS-
peak. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327,
Springer, Heidelberg (2006)

12. Lifschitz, V.: On the semantics of strips. In: Georgeff, M.P., Lansky, A.L. (eds.)
Reasoning about Actions and Plans, pp. 1–9. Morgan Kaufmann, San Francisco
(1986)

Satisfying Maintenance Goals 103

13. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg
(2005)

14. Sardina, S., Shapiro, S.: Rational action in agent programs with prioritized goals.
In: AAMAS 2003. Proceedings of the second international joint conference on au-
tonomous agents and multiagent systems, Melbourne, pp. 417–424 (2003)

15. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: IJCAI 2003. Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (2003)

16. Thangarajah, J., Winikoff, M., Padgham, L., Fischer, K.: Avoiding resource con-
flicts in intelligent agents. In: van Harmelen, F. (ed.) ECAI 2002. Proceedings of
the 15th European Conference on Artifical Intelligence, Lyon, France (2002)

17. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C., de Boer, F.S.: Goal-oriented
modularity in agent programming. In: Birna van, M. (ed.) AAMAS 2006. Proceed-
ings of the fifth international joint conference on autonomous agents and multiagent
systems, Hakodate, pp. 1271–1278 (2006)

18. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and pro-
cedural goals in intelligent agent systems. In: KR2002. Proceedings of the eighth
international conference on principles of knowledge respresentation and reasoning,
Toulouse (2002)

Towards Alternative Approaches to

Reasoning About Goals

Patricia H. Shaw and Rafael H. Bordini

Department of Computer Science,
University of Durham, U.K.

{p.h.shaw,r.bordini}@durham.ac.uk

Abstract. Agent-oriented programming languages have gone a long way
in the level of sophistication offered to programmers, and there has also
been much progress in tools to support multi-agent systems development
using such languages. However, much work is still required in mechanisms
that can reduce the burden, typically placed on programmers, of ensur-
ing that agents behave rationally, hence being effective and as efficient
as possible. One such mechanisms is reasoning about declarative goals,
which is increasingly appearing in the agents literature; it allows agents
to make better use of resources, to avoid plans hindering the execution
of other plans, and to be able to take advantage of opportunities for re-
ducing the number of plans that have to be executed to achieve certain
combinations of goals. In this paper, we introduce a Petri-net based ap-
proach to such reasoning, and we report on experimental results showing
that this technique can obtain comparable improvements on an agent’s
behaviour to other existing approaches (our experiments do not yet cover
reasoning about resource usage). Our long-term goal is to provide a num-
ber of alternative approaches for such reasoning, evaluate and compare
their performances under different configurations, and incorporate them
into interpreters for agent-oriented programming languages in such a way
that the most appropriate approach is used at given circumstances.

1 Introduction

Recent years have seen an astonishing progress in the level of sophistication
and practical use of various different agent-oriented programming languages [3].
These languages provide constructs that were specifically created for the im-
plementation of systems designed on the basis of the typical abstractions used
in the area of autonomous agents and multi-agent systems, therefore of much
help for the development of large-scale multi-agent systems. However, the bur-
den of ensuring that an agent behaves rationally in a given application is left to
programmers (even though the languages do offer some support for that task).

Clearly, it would make the work of multi-agent systems developers much eas-
ier if we could provide (semi-) automatic mechanisms to facilitate the task of
ensuring such rationality, provided, of course, that they are sufficiently fast to
be used in practical agent programming languages. One important issue for a

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 104–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Alternative Approaches to Reasoning About Goals 105

rational agent is that of deliberation — that is, deciding which goals to adopt
in the first place (see [15,9,2] for some approaches to agent deliberation in the
context of agent programming languages). Besides, once certain goals have been
adopted, the particular choice of plans to achieve them can cause a significant
impact in the agent’s behaviour and performance, as particular plans may inter-
fere with one another (e.g., through the use of particular resources, or through
the effects they have in the environment). The general term that has been used
to refer to the reasoning that addresses these issues, which requires declarative
goal representations [25,24], is reasoning about goals.

Much work has been published recently introducing various approaches which
contribute to addressing this problem [7,21,22,23,11,16]. In most cases, in par-
ticular in the work by Thangarajah et al. and Clement et al., the idea of “sum-
mary information” is used in the proposed techniques for reasoning about goals.
However, the size of such summary information can potentially grow exponen-
tially on the number of goals and plans the agent happens to be committed to
achieve/execute [8]. It remains to be seen how practical those approaches will
be for real-world problems.

In our work, we are interested in mechanisms for goal reasoning which do not
require such summary information, yet can reproduce the reasoning that has
been proposed in the literature. Avoiding the use of summary information, of
course, does not guarantee that those alternative techniques will be more efficient
than the existing approaches. In fact, our approach is to try and use well-known
formalisms with which to attempt to model the goal reasoning problem, then
experimentally evaluating the various different approaches. We aim, in future
work, to combine those approaches in such a way that agents can use one mech-
anism or another in the circumstances where each works best, if that turns out
to be practically determinable.

So far, we have been able to model the goal reasoning problem using two
different approaches, neither of which requires summary information as in the
existing literature on the topic (the next section gives a detailed description of
such work). First, we have modelled goal-adoption decision making as a reach-
ability problem in a Petri net [14]. Then, using the idea and method suggested
in [18,17] for translating a Hierarchical Task Network (HTN) plan into a Con-
straint Satisfaction Problem (CSP), we have also developed a method for, given
an agent’s current goals and plans (possibly including a goal the agent is con-
sidering adopting), generating an instance of a CSP which can produce a valid
ordering of plans — if one exists — to help the agent avoid conflicts (and take
advantage of opportunities) when attempting to achieve all its goals.

For reasons of space, in this paper we focus on presenting the Petri-net based
technique only, and we also give initial experimental analysis of an agent’s per-
formance when using such goal reasoning in two different scenarios; the results
of the CSP-based technique will be reported in a separate paper. The remainder
of this paper is organised as follows. Section 2 gives an overview of the types
of goal reasoning and various approaches to that problem that have appeared
in the literature. Then, in Section 3, we look at how such reasoning can be

106 P.H. Shaw and R.H. Bordini

represented as a Petri net. Section 4 provides an experimental analysis of the
Petri-net based reasoning. Finally, we give conclusions and a summary of future
work in Section 5.

2 Reasoning About Goals

There are multiple types of conflicts that rational agents need to be aware of;
these can be internal to the individual agent, or external between two or more
agents [10]. While conflicts can occur in social interactions, when attempting to
delegate or collaborate over a set of given tasks [5], the main focus of this paper
is to look at conflicts between goals within an individual agent.

The conflicts arise within a single agent when it has taken on two or more
goals that are not entirely compatible [10]. The conflicts may be caused if there
is a limited amount of resources available [23,16], or it may be due to the effects
the actions involved in achieving the goals have on the environment; the actions
in the plans being executed to achieve concurrent goals can cause effects which
can hinder, or even prevent altogether, the successful completion of some of those
plans [21,22].

In all the work by Thangarajah et al. referred above, a Goal-Plan Tree (GPT)
is used to represent the structure of the various plans and sub-goals related to
each goal (see Figure 1). In order for a plan within the tree to be completed,
all of its sub-goals must first be completed. However, to achieve a goal or a
sub-goal, only one of its possible plans needs to be executed. At each node
on the tree, summary information is used to represent the various constraints
under consideration. The reasoning done in their approach is solely internal to
an individual agent.

SG3: TransmitResults

P2: MoveToPlan(A)

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A)

P3: AnalyseSoilPlan(A) P5: TransmitResultsPlan2P4: TransmitResultsPlan1

SG4: TransmitData

P6: TransmitDataPlan

SG6: TransmitData

P8: TransmitDataPlan

SG5: MoveCloseToLander

P7: MoveClosePlan

P1: SoilExpPlan

G1: PerformeSoilExpAt(A)

Fig. 1. Goal-Plan Tree for a Mars rover as used by Thangarajah et al. Goals and
sub-goals are represented by rectangles, while plans are represented by ovals.

Towards Alternative Approaches to Reasoning About Goals 107

Reasoning about effects of actions needs to consider both positive and nega-
tive impacts in relation to other plans, and causal links that may exist between
goals. In the first paper by Thangarajah et al. where reasoning about effects
is considered, they show how to detect and avoid negative interference between
goals [21]. By using additional types of summary information, similar to those
developed in [7], such as summaries for definite or potential pre-conditions and
in-conditions along with post-conditions or effects, they monitor the causal links
between effects produced by a plan which are used as pre-conditions of another
to ensure these are not interfered with. To derive these effects, a formal notation
based on set theory is defined, to allow agents to produce the summary informa-
tion in order to reason about conflicting actions between its current goals and
any new goals the agent might consider adopting.

When conflicts occur, often they can be handled by scheduling the plan exe-
cution so as to protect the causal links until they are no longer required. Also
in [21], the authors determine a sequence of steps for an agent to schedule plan
execution so as to avoid interference, including checks that need to be performed
before an agent can accept to adopt a new goal. Empirical results from experi-
ments using the reasoning described in that paper are given in [19], comparing
the performance of an agent with and without such reasoning, varying the level
of interaction between goals and the amount of parallelism. The results show the
improvement in number of goals successfully achieved, and only slight increase
in time taken to perform the additional reasoning.

In [22], Thangarajah et al. focus on exploiting positive interaction between
goals. This is where two or more plans cause the same effect, so rather than
executing both, it might be possible to merge the two plans, thereby improving
the agents’ performance. To represent this form of reasoning, they again use
the goal-plan tree with summary information including definite and potential
effects of the plans and goals; they also define a particular method to derive
such summaries. They then describe how an agent can decide if it is feasible
to merge the plans, and how to avoid waiting too long if one of the two plans
selected for merging is reached considerably sooner than the other or the second
plan is never reached, in case it was a “potential” merge rather than a “definite”
merge. Results from experiments using this type of reasoning are once again
presented in [19].

Horty and Pollack also consider positive interaction between plans [11]. In
their work, an agent evaluates the various options it has between its goals within
the context of its existing plans. They use estimates for the costs of plans, and
where there is some commonality between some plans, those plans will be con-
sidered for merging. If the estimated merged cost is less than the sum of the two
separate estimated costs, then the plans are actually merged. The example they
give to illustrate this is an “important” plan for going to a shopping centre to
buy a shirt, while also having a less important goal of buying a tie. Both plans
involve getting money and travelling to a shopping centre, so if the overall cost
of buying the tie at the same time as the shirt is less than that of buying the tie
separately, then the plans will be merged, even though the goal of having a tie

108 P.H. Shaw and R.H. Bordini

is not as important. In this way, they look for the least expensive execution of
plans involved in achieving the goals.

When referring to reasoning about resource usage in a GPT [23], Thangarajah
et al. consider both reusable and consumable resources. For example, a commu-
nication channel is a reusable resource, while energy or time is consumed so they
cannot be reused. Summaries of the resource requirements are passed up the tree
towards the goal, describing which resources are necessary in order to achieve
the goals, and also which resources are used only potentially. They introduce
a notation, based on set theory, allowing the derivation of summaries for the
resource requirements of each goal and plan with sub-goals. These can then be
used to reason about where conflicts might occur, so that they can be avoided
by choosing suitable alternative plans or appropriately ordering plan execution.
An algorithm is given to compute whether it is feasible to add a new goal to the
existing set of goals without rendering them unachievable. The initial formula-
tion of the goal-plan tree and summary information for an agent is produced at
compile time, and the highlighted conflicts are then monitored at runtime in an
attempt to avoid conflict.

Empirical results from experiments done using such reasoning are given in [20].
They consider goal-plan trees of depth 2 and depth 5, varying the amount of
parallelism between multiple goals, and the amount of competition for the re-
sources either by reducing their availability or increasing the number of goals
competing for the same resources. The reasoning is implemented as an exten-
sion to the JACK agent development system [4]; the extended system is called
X-JACK. The performance of X-JACK is compared against the performance of
JACK without any of the additional reasoning, and shows an improvement in
performance regarding the number of goals successfully achieved, typically with
only a half-second time increase in the computation cost.

In comparison, [16] consider the use of limited resources when deliberating
and performing actions in a multi-agent environment, where coordination and
negotiation with the other agents is required. In their attempt to address the
problem of limited resources within meta-level control, they make use of rein-
forcement learning to improve the agents’ performance over time.

To our knowledge, while Thangarajah et al. have reported on experimental
results for reasoning separately about each of the types of interactions between
plans and goals as well as resource usage, no results appear in the literature
showing what is the performance obtained when an agent is doing all those
forms of reasoning simultaneously. All results are given for the individual types,
to demonstrate the sole effects from the individual reasoning and the (typically
very small) amount of added computational costs associated with it. The lack
of combined results seem to suggest the possibility of there being interference
between the different forms of reasoning presented in their approach. For exam-
ple, if one reasoning suggests that performing a particular plan will cause one
type of conflict (say, lack or resources), while another reasoning suggests that
the only alternative plan for that goal will also cause a conflict (say, a negative
interference with another goal), the agent may be unable to decide between the

Towards Alternative Approaches to Reasoning About Goals 109

two without some additional overriding reasoning. It also remains unknown if
their approach is still equally efficient when the various types of reasoning are
combined.

The results were also limited in the depth of trees tested. In the real world,
it is likely the plans (and hence the goals) would be far more complex, leading
to trees of significantly greater sizes. However, using the summary information,
as a goal-plan tree grows, the amount of summary information to handle could
potentially grow exponentially [8], which would have a significant impact on the
performance of the agent for larger problems.

Prior to the time that the work by Thangarajah et al. was published, the
Distributed Intelligent Agents Group led by Edmund Durfee, produced some
similar research for modelling — and reasoning about — plan effects, extending
their work to cover multi-agent systems rather than individual agents [6,7,8]. In
their work, they were interested in reasoning about conflicts to coordinate the
actions of agents that use HTN planning, while the work by Thangarajah was
based around BDI agents (focusing on individual agents instead). In [7], Clement
et al. present the summary information for pre-, in-, and post-conditions of plans,
which is adopted by Thangarajah et al. and used within goal-plan trees to reason
about both resources and effects.

3 Reasoning About Goals Using Petri Nets

Petri nets are mathematical models, with an intuitive diagrammatic represen-
tation, used for describing and studying concurrent systems [14]. They consist
of places that are connected by arcs to transitions, with tokens that are passed
from place to place through transitions. Transitions can only fire when there
are sufficient tokens in each of the input places, acting as pre-conditions for the
transition. A token is then removed from each input place, and one is placed
in each of the output places. Places are graphically represented as circles, while
transitions are represented as rectangles.

There are many variations on the basic Petri net representation, and many of
these have been used in a variety of agent systems [13,1]. Arcs can have weights
associated with them, the default weight being one. Greater weights on arcs
either require the place to have at least that many tokens for the transition to fire,
or the transition adds to the output place that number of tokens as its output.
Coloured Petri Nets are able to hold tokens of different types, representing for
example different data types. The weightings on the arcs then match up and
select the relevant tokens to fire. Reference nets allow nets to contain sub-nets.
Renew is a Petri net editor and simulator that is able to support high-level Petri
nets such as coloured and reference nets [12].

We have developed a method to represent an agents’ goals and plans using
Petri nets. Essentially, we are able to represent the same problems as expressed
by goal-plan trees in the work by Thangarajah et al. (see Figure 2 for an exam-
ple). According to the method we have devised, goals and plans are represented
by a series of places and transitions. A plan consists of a sequence of actions that

110 P.H. Shaw and R.H. Bordini

starts with a place, and has a transition to another place to represent each of
the atomic actions that occur in sequence within that plan. Goals and subgoals
are also set up as places with transitions linked to the available plans for each
goal. In Figure 2, the plans are enclosed in dark boxes, while the goals and sub-
goals are in light boxes. The plans and subgoals are nested within each other,
matching the hierarchical tree structure of the GPT.

Fig. 2. Petri Net Representation of the
Mars Rover GPT in Figure 1

The goal reasoning that we have incor-
porated into the Petri nets is to allow an
agent to handle both positive and nega-
tive interactions between multiple goals;
we are in the process of incorporating rea-
soning about resources on top of these.
Our aim is to be able to reason about
these three aspects together whilst also
avoiding the use of any “summary infor-
mation” as in the work by Thangarajah
et al. and Clement et al.. This reasoning
and the representation of the plans and
goals themselves can each be seen as an
interlinked module, as will be discussed
below. This modularisation of the method
we use to represent goals and plans as
(sub) Petri nets allows an agent to dynam-
ically produce Petri-net representations of
goals and plans (and their relationship to
existing goals and plans) that can then
be used by an agent to reason on-the-fly
about its ability to adopt a new goal given
its current commitments towards existing
goals.

Currently, the Petri nets are being gen-
erated manually, but they have been de-
signed in such modular way with the aim
of being able to automate this process. An
agent will then be able to generate new
Petri nets to model new goals as the agent

generates them or receive requests to achieve goals, allowing it to reason about
whether it is reasonable to accept the new goal. If the goal is accepted then
the Petri nets can be used to advise plan selection to avoid interference and to
benefit from positive interactions. Figure 3 shows the main modules being used
in the Petri nets. Some of the notation used in the Petri nets is specific to the
Renew Petri net editor.

The negative interference reasoning protects the effects that have been caused
in the environment until they are no longer required by the goal that caused
the change. When an agent executes a plan that produces an effect in the

Towards Alternative Approaches to Reasoning About Goals 111

:protect()

:unprotect()

Protected

Action

Plan

Variable v

v:protect()

v:set()

:set()

Protect Module

v:unprotect()

Plan

Action

:read()

v:read()

(a) Protect module for negative inter-
ference.

Variable v

:set()

:negCheck()

:check()

PreCheck Module

v:negCheck()

v:check()

Subgoal

Plan

Action

v:negCheck()

v:set()

(b) Pre-check module for pos-
itive interaction.

Can contain
multiple tokens

Variable v

While tokens remain,
continue to remove

Merge Module

Plan

Action

:removeAll()

v:removeAll()

(c) Merge module for positive interaction.

Fig. 3. Petri-Net Representation of Modules for Reasoning about Goals

environment, and that effect will be required by a later plan, the effect is im-
mediately marked as protected until it is no longer required. This is done by
using a protect module (Figure 3(a)) that adds a set of transitions and places
to the Petri nets so that when the relevant effect takes place, a transition is
fired to protect it, then when it is no longer needed another transition is fired to
release the protected effect. If another plan attempts to change something that
will impact on the protected effects, then it will be blocked and forced to wait
until the effects are no longer protected (i.e., until the release transition fires).

In the Mars Rover example, negative interference occurs when two or more
goals require taking samples at different locations and after having moved to
the first location, a second goal interferes to take the rover to another location
before the sample is taken to satisfy the fist goal. To avoid this, the causal link
is identified based on the effects and preconditions of the plans when Petri nets
are generated, and a protect module is added to ensure other goals and plans
cannot interfere with the casual link until the necessary plans have executed. In

112 P.H. Shaw and R.H. Bordini

the Petri nets, the protect module is implemented by adding a place that holds
a token to indicate if a variable (i.e., effect) is protected or not, with transitions
that the plan fires to protect the variable at the start of the causal link, then
another transition to unprotect the variable when it is no longer required.

The positive interaction reasoning checks whether the desired effects have
already been achieved (such as a Mars rover going to a specific location to
perform some tests), or whether multiple goals can all be achieved by a merged
plan rather than a plan for each goal, such as the Mars Rover transmitting all
the data back in one go instead of transmitting separately individual results
obtained by separate goals. When two or more plans achieve the same effect,
only one of the plans has to be executed. This can greatly reduce the number
of plans that are executed, especially if one of the plans has a large number of
subgoals and plans. As a result, this can speed up the completion and reduce the
costs of achieving the goals, particularly if there is a limited amount of resources.

In the Mars rover example, positive interaction can take place in both ways.
First, when moving to a different location the rover may have several goals all of
which required going to the same location; however, only one plan needs to be
actually executed to take the rover there. In the Petri nets, this is handled by a
pre-check module (Figure 3(b)) that first checks whether another plan is about
to, or has already, moved the rover to the new location, and if not it then fires
a transition to indicate that the rover will be moving to the new location so the
similar plans for other parallel goals do not need to be executed.

The second form of positive interaction is the direct merging of two or more
plans. In the Mars rover scenario, this can occur when two or more goals are
ready to transmit the data they have collected back to the base station. A merge
module (Figure 3(c)) is added to indicate that when a goal is ready to transmit
data back, it also checks to see if other goals are also ready to transmit their
data. If so, all data that is ready is transmitted by the one plan rather than each
goal separately executing individual plans to transmit the data.

4 Experimental Results and Analysis

We have used two different scenarios in our evaluation: the first is an abstract
example and the other is the simple Mars rover example.

Scenario 1: Abstract Example

In this scenario, the goal structure in Figure 4 was used for each of the goals
that were initiated. In the experiments reported here, we have opted for not
considering varying structures, but this will be considered in future experiments.
The experiments we conducted with Scenario 1 aimed to match, to the extent
we could understand and reproduce, the settings of the experiments conducted
in [19] to evaluate the GPT and summary information method that they intro-
duced, in particular their experiments to compare the performance of JACK and
X-JACK.

Towards Alternative Approaches to Reasoning About Goals 113

Goal/Subgoal

Plan

Fig. 4. Goal-Plan Tree
Used for all Goals in Sce-
nario 1

In our experiments using Scenario 1, ten goal types
were defined adjusting the selection of plans within
the goal plan tree that would interact with those of
other goals. The interaction was modelled through a
set of common variables to which each goal was able
to assign values. The variables and values are used to
represent the different effects that plans can have in
the environment.

To stress-test the Petri nets, tests were set up that
involved high levels of interaction, using a set of 5
variables, or low levels of interaction, using a set of 10
variables. Out of the 10 goal types, 5 of the goal types
used 3 variables, while the remaining 5 goals types
only altered 1 variable. During testing, 20 instanti-
ations of the 10 possible goal types were created at
random intervals and running concurrently. The Petri
nets were implemented using Renew 2.1 [12], and each
experiment was repeated 50 times.

Four experimental setups were used, with “High & Long” in the graphs (see
Figure 5) corresponding to High Levels of Negative Interference for Long Peri-
ods, down to “Normal & Random” corresponding to Normal Levels of Negative
Interference for Random Length Periods. The periods are controlled by defining
the levels within the GPT that the interaction occurs at; so, for example, in
the positive interaction, the duration over which the positive interaction takes
place can be maximised by making plans in the top levels of the GPT with the
greatest depth to interact.

A dummy Petri net was set up using the same goal structure and set of goal
types, but without any of the reasoning for positive or negative interaction. The
results from running this against the Petri net where such reasoning was included
could then be compared to show the improvements obtained by the reasoning.

Negative Interference. Each goal was given a set of 1 or 3 variables to which
it was to assign a given value and then use it (recall that this represents the
effects of plan execution in the environment). The positions in the goals where
the variables were set and then used were varied either randomly or set to require
the variables to be protected for the longest possible periods (meaning the state
of the world caused by a plan is required to be preserved for longer periods
before the interfering plans can be executed). The selections of plans in each goal
are designed to cause interference for other goals being pursued simultaneously.
This is done by ensuring a significant overlap in the variables which the goals are
setting, particularly under high levels of interaction. The effect of the reasoning
is measured by counting the number of goals achieved both by the “dummy”
and by the “reasoning” Petri nets.

The results are shown in Figure 5(a). The graphs show the averages for the
number of goals achieved by the reasoning Petri net and the dummy Petri net
from the 50 runs for each of the experiment settings, also showing the standard

114 P.H. Shaw and R.H. Bordini

Scenario 1: Negative Interference

0

5

10

15

20

25

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Experimental results for negative
interference.

Scenario 1: Positive Interaction

0

50

100

150

200

250

300

350

400

450

500

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Experimental results for positive
interaction.

Fig. 5. Results for Negative Interference and Positive Interaction in an Abstract
Scenario

deviation. The effects of the negative reasoning are immediately obvious by the
fact that the Petri nets with goal reasoning were consistently able to achieve
all the goals, while the dummy Petri nets achieved, on average, very few goals,
particularly when there were high levels of interference and variables that had
to be protected for a long time, where it was only able to achieve approximately
21% of the goals, on average. Even at normal levels of interaction and random
depth positioning, it was still only able to achieve, on average, 46% of the goals.
The standard deviation shows that the performance of the dummy Petri nets
was highly variable within the 50 runs of this experiment.

Positive Interaction. To measure the effects of reasoning about positive inter-
actions, each goal was again given a set of 1 or 3 variables, with overlap between
the goals, so that we can determine a selection of plans for each goal which can
potentially be achieved by just executing one of the plans. Each goal contains
25 plans (in its GPT), of which at least 21 would have to be executed if the goal
was being pursued on its own. This is due to two subgoals having a choice of
plans to execute in the GPT. The scenario was set up to ensure all the goals are
achievable without any reasoning, so the effects of the reasoning are measured
by the number of plans that are required to execute in order to achieve all the
goals.

As with the negative interference, the depth of the plans within the goal-plan
structure at which merging can occur is varied. Plans with more subgoals will
have a greater impact on the number of plans executed when merged than plans
with no or very few subgoals. The tests were set with mergeable plans either
high up in the GPT, or randomly placed within the tree.

The results are shown in Figure 5(b). The graphs show the averages for the
number of plans executed by an agent using the Petri net with goal reasoning
and a dummy agent; the averages are taken from the 50 runs for each of the
experiment setups, and the graphs also show the standard deviations. There is
clearly a major improvement between the dummy and the reasoning agents in all

Towards Alternative Approaches to Reasoning About Goals 115

of the simulation settings, with the reasoning agent requiring significantly fewer
plans to be executed than the dummy, whilst still achieving the same goals. For
high levels of interaction and mergeable plans at high levels in the GPT, there
is an average drop of 47% in the number of plans being executed. Even with
lower levels of interaction, and randomly placed mergeable plans, there is still
a decrease of 30% on average. This could lead to large savings in the time and
resources required by an agent to achieve its goals. While the standard deviation
shows there is more variance in the performance of the reasoning agent than the
dummy, this is due to the variations in depth and GPT of the merged plans. Even
with the variance, the reasoning consistently caused a significant improvement
in the performance in comparison to the dummy agent.

Negative and Positive Interaction. In this section, the two types of reason-
ing have been combined into one Petri net with a scenario that causes negative
interference as well as it provides opportunities for positive interaction. To main-
tain exactly the same levels of interaction, both positively and negatively, the
same GPT has been used again and the variables are duplicated for this abstract
scenario. One set of variables is used for positive interaction, while the other is
used for negative interference. This has been done, in the abstract scenario, to
maintain the levels of interaction to allow for a clear comparison, but in the
second scenario both forms of reasoning are applied to the same variables to
represent a more realistic scenario.

Each goal is given 1 or 3 variables to assign values to for the negative inter-
ference, and we use the same number of variables for positive interaction. The
number of goals achieved and the plans required are then measured to compare
the expected performance of an agent that uses the Petri-net based reasoning
against a dummy agent (i.e., an agent without any goal reasoning).

The four sets of tests were combined, in particular the negative interference
at high levels of interaction over long periods was combined with the positive
interference at high levels of interaction and at high levels within the GPT,
while the negative interference at high levels of interaction over random periods
was combined with the positive interference at high levels of interaction and at
random levels within the GPT. The experiment for interaction at normal levels
was combined in the same way.

The results are shown in Figure 6. These are broken down into three groups:
6(a) goals achieved, 6(b) plans executed, and 6(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

The reasoning agent is once again able to achieve all of its goals, while the
dummy agent is still only able to achieve 57–83% of its goals. Not only is the
dummy agent failing to achieve all its goals, it is also attempting to execute
almost all its plans in an effort to achieve those goals. This means the effects of
the positive interaction reasoning are also very obvious with a drop of 50% in
the number of plans executed by the reasoning agent for high levels of negative
interference with positive interaction for long periods in the GPT, while still
maintaining a 32% decrease in plans at lower levels of interference. The plan

116 P.H. Shaw and R.H. Bordini

Scenario 1: Positive and Negative Interaction
Comparing Goals Achieved

0

5

10

15

20

25

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Comparison of goals
achieved across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans Executed

0

50

100

150

200

250

300

350

400

450

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Comparison of plans
executed across the four
experimental setups.

Scenario 1: Positive and Negative Interaction
Comparing Plans per Goal Ratio

0.0

10.0

20.0

30.0

40.0

50.0

60.0

High & Long High & Random Normal & Long Normal &
Random

Simulation Setup

P
la

n
s

p
er

 G
o

al

Reasoning
Dummy

(c) Comparison of ratio
between plans executed
and goals achieved.

Fig. 6. Experimental Results for Combined Positive and Negative Interaction in an
Abstract Scenario

to goal ratio shows that the reasoning agent only had to execute on average 10
plans at high levels of interaction, and 14 plans at lower levels of interaction,
to achieve its goals, while the dummy agent had to execute on average 39 plans
at high levels of interaction and 25 at normal levels. Recall that while in the
GPT there are only 25 plans available to achieve the main goal on its own, the
dummy agent was still executing plans in goals that failed, and the ratio shows
all the plans executed compared to the goals actually achieved. The standard
deviation shows that, in general, the performance of the reasoning agent is very
consistent, whereas the dummy agent is highly erratic, particularly when there
are high levels of interaction for long periods.

Scenario 2: Mars Rover

To show the reasoning being used in a more concrete example, a Mars rover
scenario has also been used. In this scenario, the rover is given a set of locations
and a set of tests (or tasks) to perform at each location. Each task at each
location is represented by a separate goal, as shown in Figure 2, offering much
opportunity for both negative and positive interactions. All of the plans contain
a set of preconditions that must be true for it to be able to execute, and these
preconditions are satisfied by the effects of other plans. So while there may be
less plans involved than in Scenario 1, there is still a lot of interaction taking
place. The preconditions lead to a partial ordering of the plans for the goal
to be achieved. In our experiments, 2, 4, and 6 locations were used, with 5
tests carried out at each location, in order to evaluate the performance of the
reasoning over different levels of concurrency, specifically 10, 20, or 30 goals being
simultaneously pursued.

For the interests of comparison, the negative and positive reasoning have
again been separated out before being combined together in the final set of
experiments.

Negative Interference. Negative interference is caused when the rover goes
to a location ready to perform its tasks, but is then interrupted by another goal

Towards Alternative Approaches to Reasoning About Goals 117

that required going to a different location before the tasks required at the first
location by the previous goal had been completed. The effects of the reasoning
is again measured by the number of goals achieved. The results are shown in
Figure 7(a).

Scenario 2: Negative Interference

0

5

10

15

20

25

30

10 20 30

Goals Assigned

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Reasoning about negative interfer-
ence.

Scenario 2: Positive Interaction

0

20

40

60

80

100

10 20 30

Goals Assigned
P

la
n

s
E

xe
cu

te
d

Reasoning
Dummy

(b) Reasoning about positive interac-
tion.

Fig. 7. Results for Negative Interference and Positive Interaction in the Mars Rover
Example

The results again show a definite improvement obtained by adding the rea-
soning about negative interference, whereby all goals were achieved, while the
dummy agent is still only able to achieve on average 75% of its goals, across all
the levels of goal concurrency, even at the lowest levels.

Positive Interaction. In the Mars Rover example, there are two main places
for positive interaction. The first is when multiple goals all require the rover to
perform tests/tasks at the same location, while the second is when the goals
require transmitting their results back to the mission control team, after having
performed the tests. When the goals have all obtained their test results, these
can either be transmitted back to the base individually, or one goal can assume
the responsibility of transmitting all the results back at the same time. This
means only one plan has to be executed whereas without the reasoning an agent
ends up executing one plan per goal.

The negative interference was removed from this setup to ensure all goals could
be achieved without any reasoning. This meant the number of plans executed
could be compared more fairly. The results are shown in Figure 7(b).

A clear reduction in the average number of plans executed can again be ob-
served in these results, with higher levels of concurrency giving a 32% reduction
in the number of plans executed to achieve the same goals. Even the lowest level
of concurrency offers a 28% reduction that could be highly beneficial when there
are many constraints imposed on an agent, such as time and resource availability.

118 P.H. Shaw and R.H. Bordini

Combined Negative and Positive Interaction. While both types of rea-
soning can be effectively used on their own, the combined effects of both types
of reasoning give the best results, particularly in highly constrained conditions.
In the final set of results reported here, we show the results of the combined
reasoning about negative interference and positive interaction in the Mars rover
scenario.

The results are shown in Figure 8. These are broken down into three groups:
8(a) goals achieved, 8(b) plans executed, and 8(c) the ratio between plans exe-
cuted and goals achieved. The standard deviations are also included in each of
these graphs.

Scenario 2: Positive and Negative Interaction
Comparing Goals Achieved

0

5

10

15

20

25

30

35

10 Goals 20 Goals 30 Goals

Goals Assigned

G
o

al
s

A
ch

ie
ve

d

Reasoning
Dummy

(a) Comparing goals
achieved.

Scenario 2: Positive and Negative Interaction
Comparing Plans Executed

0

10

20

30

40

50

60

70

80

90

10 Goals 20 Goals 30 Goals

Goals Assigned

P
la

n
s

E
xe

cu
te

d

Reasoning
Dummy

(b) Comparing plans exe-
cuted.

Scenario 2: Positive and Negative Interaction
Comparing Plans per Goal Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 Goals 20 Goals 30 Goals

Goals Assigned

P
la

n
 t

o
 G

o
al

 r
at

io

Reasoning
Dummy

(c) Comparing the ratio
between plans executed
and goals achieved.

Fig. 8. Experimental Results for Reasoning about Negative and Positive Interaction
in the Mars Rover Example

While the results all show that there is only a slight improvement in the
number of plans executed, the number of goals achieved by the reasoning agent
is significantly more, and the plan to goal ratio is almost half that of the agent
without any reasoning, increasing from a 34% reduction in the number of plans
per goal to a 47% reduction as the level of goal concurrency increases. The
reasoning agent is again consistently achieving all the goals it has been given,
while the proportion the dummy agent was able to achieve dropped from 67% to
54% as the amount of concurrency increased. The standard deviation also shows
that the reasoning agent is more consistent in its results in this scenario, with a
lower range of variation.

5 Conclusions and Future Work

In this paper we have presented an alternative approach to reasoning about
negative and positive interactions between goals. The results clearly show a
significant improvement in the number of goals being achieved, and the number
of plans required to achieve them. To the best of our knowledge, this is the first
time the two types of reasoning have been combined together to show the joint
effects of reasoning about both positive and negative goal interactions working
in tandem for an individual agent. As only a small extra computing cost is

Towards Alternative Approaches to Reasoning About Goals 119

expected to result from the added reasoning, the benefits are very likely to
outweigh any costs. However, in future work, we aim to analyse in detail the costs
associated with the reasoning and compare this cost with alternative approaches
such as a CSP representation and existing approaches such as the approach by
Thangarajah et al. using a GPT [21,22,23]. In all experiments reported in this
paper, such costs appeared to be negligible.

Preliminary work has been done in representing the same type of reasoning
approached in this paper as a CSP, in order to provide further sources of com-
parison. A further type of reasoning that can be used to improve an agent’s
performance is reasoning about resources, particularly when there is a limited
supply of consumable resources available. We are currently in the process of in-
cluding that type of reasoning in both our Petri-net and CSP-based techniques
for reasoning about goals.

Currently, the Petri nets are being produced manually, but their modular de-
sign provides scope for automating this process, so that it can be incorporated
into an agent architecture for on-the-fly reasoning about new goals to be poten-
tially adopted. This will also be possible for the CSP-based approach, offering
the agents a choice of reasoners if one proves to be better suited for particular
situations (e.g., the structure/scale of the agent’s GPT, or specific properties
of the environment) than the others. Our long-term objective is to incorporate
such reasoners into the interpreters of agent-oriented programming languages.

Acknowledgements

We gratefully acknowledge the support of EPSRC’s DTA scheme. Many thanks
to Berndt Farwer for recommending the Renew tool and the help in using it.

References

1. Bonnet-Torrès, O., Tessier, C.: From team plan to individual plans: a petri net-
based approach. In: AAMAS 2005. 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 797–804. ACM Press, New York
(2005)

2. Bordini, R.H., Bazzan, A.L.C., de Oliveira Jannone, R., Basso, D.M., Viccari,
R.M., Lesser, V.R.: AgentSpeak(XL): Efficient intention selection in BDI agents
via decision-theoretic task scheduling. In: Castelfranchi, C., Johnson, W. (eds.)
AAMAS 2002, pp. 1294–1302. ACM Press, New York (2002)

3. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Pro-
gramming: Languages, Platforms and Applications. In: Number 15 in Multiagent
Systems, Artificial Societies, and Simulated Organizations, Springer, Heidelberg
(2005)

4. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents -
components for intelligent agents in java. Technical report, Technical report, Agent
Oriented Software Pty. Ltd, Melbourne, Australia (1998)

120 P.H. Shaw and R.H. Bordini

5. Castelfranchi, C., Falcone, R.: Conflicts within and for collaboration. In: Tessier,
C., Chaudron, L., Müller, H.-J. (eds.) Conflicting Agents: Conflict Management in
Multiagent Systems, Multiagent systems, Artificial societies, and Simulated orga-
nizations, ch. 2, pp. 33–62. Kluwer Academic Publishers, Dordrecht (2001)

6. Clement, B.J., Durfee, E.H.: Identifying and resolving conflicts among agents with
hierarchical plans. In: Proceedings of AAAI Workshop on Negotiation: Settling
Conflicts and Identifying Opportunities, Technical Report WS-99-12, pp. 6–11.
AAAI Press (1999)

7. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical plan-
ning agents using summary information. In: AAAI 1999/IAAI 1999. Proceedings
of the sixteenth national conference on Artificial intelligence and the eleventh In-
novative applications of artificial intelligence conference innovative applications of
artificial intelligence, pp. 495–502. AAAI Press, California (1999)

8. Clement, B.J., Durfee, E.H.: Performance of coordinating concurrent hierarchi-
cal planning agents using summary information. In: ICMAS. Proceedings of 4th
International Conference on Multi-Agent Systems, pp. 373–374. IEEE Computer
Society Press, Los Alamitos (2000)

9. Dastani, M., de Boer, F., Dignum, F., Meyer, J.-J.: Programming agent deliber-
ation: an approach illustrated using the 3apl language. In: AAMAS 2003. Pro-
ceedings of the second international joint conference on Autonomous agents and
multiagent systems, pp. 97–104. ACM Press, New York (2003)

10. Hannebauer, M.: Their problems are my problems - the transition between internal
and external conflict. In: Tessier, C., Chaudron, L., Müller, H.-J. (eds.) Conflicting
Agents: Conflict Management in Multiagent Systems, Multiagent systems, Arti-
ficial societies, and Simulated organizations, ch. 3, pp. 63–110. Kluwer Academic
Publishers, Dordrecht (2001)

11. Horty, J.F., Pollack, M.E.: Evaluating new options in the context of existing plans.
Artificial Intelligence 127(2), 199–220 (2004)

12. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – the Reference Net Work-
shop(Release 2.1) (May 2006), http://www.renew.de/

13. Mazouzi, H., El Fallah Seghrouchni, A., Haddad, S.: Open protocol design for
complex interactions in multi-agent systems. In: AAMAS 2002, pp. 517–526. ACM
Press, New York (2002)

14. Peterson, J.L.: Petri Net Theory and the modeling of Systems. Prentice-Hall, En-
glewood Cliffs (1981)

15. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for bdi
agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–94. Springer, Heidelberg
(2005)

16. Raja, A., Lesser, V.: Reasoning about coordination costs in resource-bounded
multi-agent systems. In: Proceedings of AAAI 2004 Spring Symposium on Bridging
the multiagent and multi robotic research gap, pp. 25–40 (March 2004)

17. Surynek, P.: On state management in plan-space planning from CP perspective. In:
ICAPS. Proceedings of Workshop on Constraint Satisfaction Techniques for Plan-
ning and Scheduling Problems, International Conference on Automated Planning
and Scheduling, AAAI Press, Stanford (2006)

18. Surynek, P., Barták, R.: Encoding HTN planning as a dynamic CSP. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, p. 868. Springer, Heidelberg (2005)

19. Thangarajah, J.: Managing the Concurrent Execution of Goals in Intelligent
Agents. PhD thesis, School of Computer Science and Informaiton Technology,
RMIT University, Melbourne, Victoria, Australia (December 2004)

http://www.renew.de/

Towards Alternative Approaches to Reasoning About Goals 121

20. Thangarajah, J., Padgham, L.: An empirical evaluation of reasoning about resource
conflicts in intelligent agents. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) AA-
MAS 2004. LNCS (LNAI), vol. 3394, pp. 1298–1299. Springer, Heidelberg (2005)

21. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: IJCAI. Proceedings of 18th International
Joint Conference on Artificial Intelligence, pp. 721–726. Morgan Kaufmann, San
Francisco (2003)

22. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and exploiting positive
goal interaction in intelligent agents. In: AAMAS 2003. Proceedings of the second
international joint conference on Autonomous agents and multiagent systems, pp.
401–408. ACM Press, New York (2003)

23. Thangarajah, J., Winikoff, M., Padgham, L.: Avoiding resource conflicts in intelli-
gent agents. In: van Harmelen, F. (ed.) ECAI 2002. Proceedings of 15th European
Conference on Artifical Intelligence, IOS Press, Amsterdam (2002)

24. van Riemsdijk, M.B., Dastani, M., Meyer, J.-J.C.: Semantics of declarative goals
in agent programming. In: AAMAS 2005. Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pp. 133–140. ACM
Press, New York (2005)

25. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: KR2002. Proceedings of the Eighth
International Conference on Principles of Knowledge Representation and Reason-
ing, 22–25 April, Toulouse, France, pp. 470–481(2002)

Reflections on Agent Beliefs

J.W. Lloyd1 and K.S. Ng2

1 College of Engineering and Computer Science
The Australian National University

jwl@cecs.anu.edu.au
2 National ICT Australia
kee.siong@nicta.com.au

Abstract. Some issues concerning beliefs of agents are discussed. These
issues are the general syntactic form of beliefs, the logic underlying be-
liefs, acquiring beliefs, and reasoning with beliefs. The logical setting is
more expressive and aspects of the reasoning and acquisition processes
are more general than are usually considered.

1 Introduction

Beliefs are an important component of every agent system that assist in the
selection of actions. Because of their importance, there is a huge literature on
representing, reasoning with, and acquiring beliefs. This paper contributes to
this literature with a setting for beliefs that employs an unusually expressive
logic.

We argue that since the purpose of beliefs is to help select actions, the general
syntactic form for beliefs matters and that this form should be function defini-
tions. We also argue that it is desirable that the logic in which these definitions
are written be as expressive as possible. For this reason, we admit higher-order
functions so that functions may take other functions as arguments. This means
that the programming idioms of functional programming are available, and that
sets and multisets can be represented by abstractions. Also it is common for
beliefs to have a modal nature, usually temporal or epistemic. For example, on
the temporal side, it might be important that at the last time or at some time in
the past, some situation held and, therefore, a certain action is now appropriate.
Similarly, on the epistemic side, beliefs about the beliefs of other agents may be
used to determine which action to perform. The usefulness of modal beliefs for
agents is now well established, in [1] and [2], for example. Besides, introspection
reveals that people use temporal and epistemic considerations when deciding
what to do. These considerations lead to the choice of multi-modal, higher-order
logic as the logic for the beliefs.

While many beliefs can be built into agents beforehand by their designers,
it is also common for beliefs to be acquired by some kind of learning process
during deployment. We discuss an approach to belief acquisition that includes
as special cases simple updating, belief revision [3], and learning [4].

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 122–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reflections on Agent Beliefs 123

During action selection, it is necessary to reason about beliefs or, more accu-
rately in our case, compute with beliefs. We discuss a computation system for
the logic that greatly extends existing modal and temporal logic programming
systems, and give examples to illustrate how computation works. For most ap-
plications, computation is efficient enough that it could be used to select actions
in real time.

In summary, the main contribution of this paper is a setting for agent beliefs
in an expressive logic. A computation system that forms the core of a modal
functional logic programming language is provided to reason about beliefs. All
the facilities described here have been implemented.

The next section contains a discussion of the necessary logical machinery.
Section 3 motivates the idea that beliefs should be function definitions. Section 4
shows how agents can acquire beliefs. Section 5 discusses how reasoning with
beliefs is handled. Section 6 gives some conclusions.

2 Logic

In this section, we outline the most relevant aspects of the logic, focussing to
begin with on the monomorphic version. We define types and terms, and give an
introduction to the modalities that will be most useful in this paper. Full details
of the logic, including its reasoning capabilities, can be found in [5].

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructor Ω of arity 0. Ω is the type of the booleans. Each constant in C
has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, Types are built up from the set of type constructors, using the symbols
→ and ×.

Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk

is a type. (Thus a type constructor of arity 0 is a type.)
2. If α and β are types, then α → β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

The set C always includes the following constants.

1. � and ⊥, having signature Ω.
2. =α, having signature α → α → Ω, for each type α.
3. ¬, having signature Ω → Ω.
4. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
5. Σα and Πα, having signature (α → Ω) → Ω, for each type α.

124 J.W. Lloyd and K.S. Ng

The intended meaning of =α is identity (that is, =α x y is � iff x and y are
identical), the intended meaning of � is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→, ←−, and ←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to
� iff the predicate maps at least one element to � and Πα maps a predicate to
� iff the predicate maps all elements to �.

We assume there are necessity modality operators �i, for i = 1, . . . , m.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α → β.
4. If s is a term of type α → β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn.
6. If t is a term of type α and i ∈ {1, . . . , m}, then �it is a term of type α.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form (Πα λx.t)
are written as ∀αx.t (in accord with the intended meaning of Σα and Πα).
Thus, in higher-order logic, each quantifier is obtained as a combination of an
abstraction acted on by a suitable function (Σα or Πα).

Constants can be declared to be rigid; they then have the same meaning in
each world (in the semantics). A term is rigid if every constant in it is rigid.

If α is a type, then Bα is the set of basic terms of type α [6]. Basic terms repre-
sent individuals. For example, BΩ is {�, ⊥}. Also BInt is {. . . , −2, −1, 0, 1, 2, . . .}.

The polymorphic version of the logic extends what is given above by also
having available parameters which are type variables (denoted by a, b, c, . . .).
The definition of a type as above is then extended to polymorphic types that
may contain parameters and the definition of a term as above is extended to
terms that may have polymorphic types. We work in the polymorphic version of
the logic in the remainder of the paper. In this case, we drop the α in ∃α, ∀α,
and =α, since the types associated with ∃, ∀, and = are now inferred from the
context. The universal closure of a formula ϕ is denoted by ∀(ϕ).

An important feature of higher-order logic is that it admits functions that can
take other functions as arguments. (First-order logic does not admit these so-
called higher-order functions). This fact can be exploited in applications, through
the use of predicates to represent sets and predicate rewrite systems that are used
for learning, for example.

Theories in the logic consist of two kinds of assumptions, global and local.
The essential difference is that global assumptions are true in each world in
the intended interpretation, while local assumptions only have to be true in
the actual world in the intended interpretation. Each kind of assumption has a

Reflections on Agent Beliefs 125

certain role to play when proving a theorem. A theory is denoted by a pair (G, L),
where G is the set of global assumptions and L is the set of local assumptions.

As is well known, modalities can have a variety of meanings, depending on the
application. Some of these are indicated here; much more detail can be found in
[1], [2] and [5], for example.

In multi-agent applications, one meaning for �iϕ is that ‘agent i knows ϕ’.
In this case, the modality �i is written as Ki.

A weaker notion is that of belief. In this case, �iϕ means that ‘agent i believes
ϕ’ and the modality �i is written as Bi.

The modalities also have a variety of temporal readings. We will make use of
the (past) temporal modalities � (‘last’) and � (‘always in the past’). We also
use the modality � (‘sometime in the past’), which is dual to �.

Modalities can be applied to terms that are not formulas. Thus terms such as
Bi42 and �A, where A is a constant, are admitted. We will find to be partic-
ularly useful terms that have the form �j1 · · · �jrf , where f is a function and
�j1 · · · �jr is a sequence of modalities.

Throughout, it is assumed that all belief bases contain the standard equality
theory given in [5] which includes definitions for equality, the connectives, the
quantifiers, the if then else function, an assumption that gives β-reduction, and
some assumptions concerning modalities.

One of these modal assumptions is the following schema that can be used as
a global assumption.

(�is t) = �i(s t),

where s is a syntactical variable ranging over terms of type α → β and t is a
syntactical variable ranging over rigid terms of type α. Specialised to some of
the epistemic and temporal modalities discussed so far, this means, for example,
that

(Bis t) = Bi(s t) and (�s t) = �(s t)

are global assumptions (under the rigidity assumption on t).
Another useful global assumption in the standard equality theory is

�it = t,

where t is a syntactical variable ranging over rigid terms and i ∈ {1, . . . , m}.
Instances of this schema that could be used as global assumptions include the
following.

Bi42 = 42, Bi� = � and �⊥ = ⊥.

Let (X, A, μ) be a measure space. A density (with respect to the measure
μ) is a non-negative, integrable function h on X such that

∫
X

h dμ = 1. We
let Density σ denote the type of densities defined on sets whose elements have
type σ.

126 J.W. Lloyd and K.S. Ng

3 Beliefs as Function Definitions

In this section, we discuss suitable syntactic forms for beliefs. There are no gen-
erally agreed forms for beliefs in the literature, other than the basic requirement
that they be formulas. For the purpose of constructing multi-agent systems, we
propose the following definition.

Definition 4. A belief is the definition of a function f : σ → τ having the form

���∀x.((f x) = t),

where ��� is a (possibly empty) sequence of modalities and t is a term of type τ .
A belief base is a set of beliefs.

Typically, for agent j, beliefs have the form Bjϕ, with the intuitive meaning
‘agent j believes ϕ’, where ϕ is ∀x.((f x) = t). Other typical beliefs have the
form BjBiϕ, meaning ‘agent j believes that agent i believes ϕ’. If there is a
temporal component to beliefs, this is often manifested by temporal modalities
at the front of beliefs. Then, for example, there could be a belief of the form�2BjBiϕ, whose intuitive meaning is ‘at the second last time, agent j believed
that agent i believed ϕ’. (Here, �2 is a shorthand for ��).

We will now use the rational agent architecture described in [7] to motivate
the introduction of Definition 4 and illustrate its usefulness. The arguments used
are sufficiently general to be applicable to more general (PO)MDP-based agent
architectures. Consider an agent application for which σ is the type of (internal)
states of the agent and α is the type of actions. The dynamics of the agent can
thus be modelled with a density f : Density σ × α × σ. By conditioning on the
first two arguments, we get a (conditional) density f ′ : σ×α → Density σ. If the
agent is in a certain state and a certain action is applied, this function gives a
distribution over the states the agent could end up in as a result of applying that
action. In principle, knowing this transition distribution and the utility of states
is enough to make a rational choice of action, where rational means choosing the
action with the maximum expected utility.

The problem is that, in practice, there are usually a very large number of states
which makes the direct use of this approach infeasible. To reduce the difficulty,
an obvious idea is to define features on the state space in order to partition it
into (a much smaller number of) equivalence classes of states that can be treated
uniformly. This idea is illustrated in Figure 1, where initial projects onto the
initial state, action projects onto the action, and final projects onto the state
that is reached as a result of applying that action. The features are the evidence
features ei, for i = 1, . . . , n, and the result features rj , for j = 1, . . . , m. Each
class of features serves a different purpose. The evidence features are chosen so
as to assist the selection of a good action, whereas the result features are chosen
so as to provide a good evaluation of the resulting state.

Now consider the function

transition : ε1 × · · · × εn × α → Density ρ1 × · · · × ρm

Reflections on Agent Beliefs 127

σ × α × σ

initial

����
��

��
��

��

action

��

final

���
��

��
��

��
�

σ

e1

����
��
��
�

en

���
��

��
��

σ

r1

����
��
��
�

rm

���
��

��
��

ε1 · · · εn α ρ1 · · · ρm

Fig. 1. Evidence and result features

that could be learned by an agent using training examples which indicate the
state that results (possibly non-deterministically) from applying a particular
action to a particular state. Given the function transition , the policy function
policy : σ → α is then defined by

(policy s) = argmax
a

E(transition ((e1 s),...,(en s),a))(utility),

where s ranges over states, a ranges over actions, and utility is a (real-valued)
random variable over a product space of type ρ1 × · · · × ρm that defines the
utility of each tuple in this space. Here E(transition ((e1 s),...,(en s),a)) denotes the
expectation with respect to the density (transition ((e1 s), . . . , (en s), a)).

Now consider this question: what makes up the belief base of such an agent?
Clearly, the definitions of the evidence and (some of the) result features should
be in the belief base. Further, the definitions of the functions transition , utility
and policy should also be in the belief base. And these are all the beliefs the
agent needs to maintain about the environment in order to act rationally. This
concludes our motivation for Definition 4.

We now examine the form that beliefs can take in more detail. Some be-
liefs can be specified directly by the programmer and the body of the definition
can be any term of the appropriate type. Some beliefs, however, need to be
acquired from training examples, usually during deployment. We propose a par-
ticular form for beliefs of this latter type. We consider beliefs that, for a function
f : σ → τ , are definitions of the following form.

���∀x.((f x) =

if (p1 x) then v1

else if (p2 x) then v2

...
else if (pn x) then vn

else v0),

where ��� is a (possibly empty) sequence of modalities, p1, . . . , pn are predicates
that can be modal and/or higher order, and v0, v1, . . . , vn are suitable values.

128 J.W. Lloyd and K.S. Ng

Such a belief is a definition for the function f in the context of the modal
sequence ���.

While the above form for beliefs may appear to be rather specialised, it turns
out to be convenient and general, and easily encompasses beliefs in more conven-
tional form. Here is an example to illustrate how one can represent a (relational)
database.

Example 1. Consider an agent that recommends TV programs. Amongst other
things the agent will need to have access to a TV guide as part of its belief base.
Represented as a relational database, the TV guide would consist of a set of
tuples, where each tuple gave details of the program that is on at a certain date,
time, and channel. Similarly, as a Prolog program, the TV guide would be the
corresponding set of facts. Actually, neither of these representations is a good
one because each ignores a functional dependency in the data: each date, time
and channel triple uniquely determines a program. Here we represent the TV
guide as a function definition that correctly models this functional dependency.

For this, we require the following type synonyms.

Occurrence = Date × Time × Channel
Date = Day × Month × Year
Time = Hour × Minute
Program = Title × Duration × (List Genre) × Classification × Synopsis .

Now we can give (a typical instance of) the definition of the function

tv guide : Occurrence → Program

that models the TV guide.

Bt ∀x.((tv guide x) =

if ((= ((21, 7, 2004), (19, 30),WIN)) x)
then (“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”)

else if ((= ((20, 7, 2004), (20, 30),ABC)) x)
then (“The Bill”, 50, [Drama],M , “Sun Hill . . . ”)

...
else (“ ”, 0, [],NA, “ ”)),

where Bt is the belief modality for the TV recommender and (“ ”, 0, [],NA, “ ”)
is the default program (where ‘default’ has a technical meaning [6]). It is worth
noting that all the queries that one might want to pose to the relational database
(or Prolog) version of the TV guide can be just as easily posed to, and answered
by, the function definition form (using computation, as discussed in Section 5).

It is also straightforward to rewrite Horn clause theories, a common way of
representing beliefs, as function definitions in the form above.

Reflections on Agent Beliefs 129

Example 2. Consider an agent with belief modality B that has beliefs of the
form

B((p t1) ←− W1)
...

B((p tn) ←− Wn).

This form of belief base includes Horn clause theories and logic programs. By
adding equations to the bodies and existentially quantifying free local variables
in the bodies, the beliefs can be written in the form

B((p x) ←− V1)
...

B((p x) ←− Vn).

This set of beliefs can then be written in the function definition form

B ∀x.((p x) =

if (λx.V1 x) then �
...

else if (λx.Vn x) then �
else ⊥),

which is equivalent to the original set of beliefs under the closed world assump-
tion. (The latter formula is essentially the completion of the original set of beliefs,
probably the semantics intended anyway.)

4 Acquiring Beliefs

Now we turn to belief acquisition. Belief bases are generally dynamic, that is,
they change from time to time during deployment of the agent. It follows that
agents need to have some method by which they can acquire new beliefs. We use
the phrase ‘belief acquisition’ to name this process. The term ‘acquire’ is intended
to be understood in a general sense that includes ‘update’, ‘revise’ and ‘learn’ as
special cases. ‘Update’ refers to the simplest form of belief acquisition in which
facts are added to or deleted from a simple database, ‘revise’ refers to the form
of acquisition that is studied in the literature on belief revision [3], and ‘learning’
refers to machine learning [4]. Belief acquisition thus covers the spectrum from
simple updating at one end to the generalisation that is characteristic of learning
at the other end.

The approach we take to belief acquisition starts from the machine learning
perspective in that it extends decision-list learning in [8]. In machine learning,
one wants to learn a function definition. The input to the learning process is

130 J.W. Lloyd and K.S. Ng

a collection of training examples that give the value of the function for some
points in its domain. A space of hypotheses is searched to find a definition for the
function that agrees ‘as well as possible’ with the training examples, according
to some measure. The hypothesis learned is intended to generalise, in the sense
that it should give the correct value on unseen examples.

We extend the learning process in several ways so that it also includes update
and belief revision. The first extension is that training examples can give the
value of the function not just on a single point of the domain but on a subset
of it given by some predicate. This allows us to capture some aspects of what
happens in theory revision. In addition, the predicate can include modalities.
Then, in order to control where on the spectrum from updating to learning we
want to be, we make a careful choice of hypothesis language. If we want simple
updating, then the hypothesis language is chosen to be very specific; if we want
learning, then the hypothesis language is chosen to be general; for intermediate
points on the spectrum, the hypothesis language is chosen accordingly.

A major ingredient for belief acquisition is a method of generating predicates.
For this, we use predicate rewrite systems which we describe informally as fol-
lows. A predicate rewrite is an expression of the form p � q, where p and q are
predicates (in a particular syntactic form). The predicate p is called the head and
q is the body of the rewrite. A predicate rewrite system is a finite set of predicate
rewrites. One should think of a predicate rewrite system as a kind of grammar
for generating a particular class of predicates. Roughly speaking, this works as
follows. Starting from the weakest predicate top (defined below), all predicate
rewrites that have top (of the appropriate type) in the head are selected to make
up child predicates that consist of the bodies of these predicate rewrites. Then,
for each child predicate and each redex in that predicate, all child predicates are
generated by replacing each redex by the body of the predicate rewrite whose
head is identical to the redex. This generation of predicates continues to produce
the entire space of predicates given by the predicate rewrite system. The details
of the non-modal version of this can be found in [6] and the modal version in [5].

A particular predicate language, called the basic language, often arises in
applications.

Definition 5. Let α be a type. A basic predicate for the type α is one of the
form (= t), for some t ∈ Bα.

The set Bα = {(= t) | t ∈ Bα} of basic predicates for the type α is called the
basic language for the type α.

We distinguish two predicate languages that are used in belief acquisition. One
is the training predicate language that is used in training examples. The general
form of a training example for a function f is

���∀x.((p x) → (f x) = v),

where p is a predicate from the training predicate language and v is a value. It
is common for training predicate languages to include the corresponding basic
language (of the appropriate type).

Reflections on Agent Beliefs 131

The other language is the hypothesis predicate language that is used in hy-
potheses. The predicates appearing in a belief come from the hypothesis pred-
icate language. In the case of learning, it would be very unlikely that the hy-
pothesis predicate language would include any basic predicates at all (because
in learning one wants to generalise beyond the training examples).

Here are two examples that illustrate some of the issues for belief acquisition.

Example 3. This example illustrates database updating which is the simplest
form of belief acquisition. We show how to acquire the database of Example 1.

First, we set up the training examples. The training predicate language is the
basic language BOccurrence. A typical predicate in this language is

(= ((21, 7, 2004), (19, 30),WIN)).

The set of values is the set of basic terms BProgram . A typical value is

(“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”).

Training examples have the form

Bt ∀x.(((= ((21, 7, 2004), (19, 30),WIN)) x) −→
(tv guide x) = (“Seinfeld”, 30, [Sitcom],PG , “Kramer . . . ”))

Bt ∀x.(((= ((20, 7, 2004), (20, 30),ABC)) x) −→
(tv guide x) = (“The Bill”, 50, [Drama],M , “Sun Hill . . . ”))

and so on.
Now we choose the hypothesis predicate language. For database updating, one

wants predicates in the hypothesis predicate language to pick out individuals.
Thus BOccurrence is also chosen as the hypothesis predicate language. With this
choice, the belief acquisition algorithm returns the definition for the function
tv guide given in Example 1.

Example 4. (This example appears in [9].) Consider a majordomo agent that
manages a household. There are many tasks for such an agent to carry out
including keeping track of occupants, turning appliances on and off, ordering
food for the refrigerator, and so on.

Here we concentrate on one small aspect of the majordomo’s tasks which is
to recommend television programs for viewing by the occupants of the house.
Suppose the current occupants are Alice, Bob, and Cathy, and that the agent
knows the television preferences of each of them. Methods for acquiring these
preferences were studied in [10]. Suppose that each occupant has a personal
agent that has acquired (amongst many other functions) the function likes :
Program → Ω, where likes is true for a program iff the person likes the program.
We also suppose that the majordomo has access to the definitions of this function
for each occupant, for the present time and for some suitable period into the past.
Let Bm be the belief modality for the majordomo agent, Ba the belief modality

132 J.W. Lloyd and K.S. Ng

for Alice, Bb the belief modality for Bob, and Bc the belief modality for Cathy.
Thus part of the majordomo’s belief base has the following form:

BmBa ∀x.((likes x) = ϕ0)
�BmBa ∀x.((likes x) = ϕ1)

...

�n−1BmBa ∀x.((likes x) = ϕn−1)
�nBm∀x.(�Ba(likes x) = ⊥)

BmBb ∀x.((likes x) = ψ0)
�BmBb ∀x.((likes x) = ψ1)

...

�k−1BmBb ∀x.((likes x) = ψk−1)

�kBm∀x.(�Bb(likes x) = ⊥)

BmBc ∀x.((likes x) = ξ0)
�BmBc ∀x.((likes x) = ξ1)

...

�l−1BmBc ∀x.((likes x) = ξl−1)

�lBm∀x.(�Bc(likes x) = ⊥),

for suitable ϕi, ψi, and ξi. The form these can take is explained in [10].
In the beginning, the belief base contains the formula

Bm∀x.(�Ba(likes x) = ⊥),

whose purpose is to prevent runaway computations into the infinite past for
certain formulas of the form �ϕ. The meaning of this formula is “the agent
believes that for all programs it is not true that at some time in the past Alice
likes the program”. After n time steps, this formula has been transformed into

�nBm∀x.(�Ba(likes x) = ⊥).

In general, at each time step, the beliefs about likes at the previous time steps
each have another � placed at their front to push them one step further back into
the past, and a new current belief about likes is acquired. (For this application,
a time step could occupy hours, days, or even longer, depending on how often
the beliefs need to be updated.)

Based on these beliefs about the occupant preferences for TV programs, the
task for the agent is to recommend programs that all three occupants would be
interested in watching together. The simplest idea is that the agent should only
recommend programs that all three occupants currently like. But it is possible

Reflections on Agent Beliefs 133

that less stringent conditions might also be acceptable; for example, it might
be sufficient that two of the occupants currently like a program but that the
third has liked the program in the past (even if they do not like it at the present
time). A (simplified) predicate rewrite system suitable for giving an hypothesis
predicate language for such an acquisition task is as follows.

top � ∧3 top top top
top � ∨2 top top
top � Bi likes % for each i ∈ {a, b, c}
top � �Bi likes % for each i ∈ {a, b, c}.

Here, the function top : a → Ω is defined by (top x) = �, for each x. The
function

∧3 : (a → Ω) → (a → Ω) → (a → Ω) → a → Ω

is defined by ∧3 p1 p2 p3 x = (p1 x)∧(p2 x)∧(p3 x), for each x. The function ∨2,
which defines ‘disjunction’ at the predicate level for two arguments, is defined
analogously.

Let group likes : Program → Ω be the function that the agent needs to ac-
quire. Thus the informal meaning of group likes is that it is true for a program iff
the occupants collectively like the program. (This may involve a degree of com-
promise by some of the occupants.) The training predicate language is BProgram ,
so that training examples for this task look like

Bm∀x.(((= P1) x) −→ (group likes x) = �)
Bm∀x.(((= P2) x) −→ (group likes x) = ⊥),

where P1 and P2 are particular programs. The definition of a typical function
that might be acquired from training examples and the hypothesis predicate
language given by the above predicate rewrite system is as follows.

Bm∀x. ((group likes x) =
if ((∧3 �Ba likes Bb likes Bc likes) x) then �
else if ((∧3 Bc likes (∨2 Ba likes Bb likes) top) x) then �
else ⊥).

Now let P be some specific program. Suppose that a computation shows that
Bm((group likes P) = ⊥) is a consequence of the belief base of the agent. On
this basis, the agent will presumably not recommend to the occupants that they
watch program P together.

5 Reasoning with Beliefs

As well as representing knowledge, it is necessary to reason with it. The reasoning
system for the logic combines a theorem prover and an equational reasoning

134 J.W. Lloyd and K.S. Ng

system. The theorem prover is a fairly conventional tableau theorem prover for
modal higher-order logic similar to what is proposed in [11]. The equational
reasoning system is, in effect, a computational system that significantly extends
existing declarative programming languages by adding facilities for computing
with modalities. The proof component and the computational component are
tightly integrated, in the sense that either can call the other. Furthermore, this
synergy between the two makes possible all kinds of interesting reasoning tasks.
For agent applications, the most common reasoning task is a computational
one, that of evaluating a function call. In this case, the theorem-prover plays a
subsidiary role, usually that of performing some rather straightforward modal
theorem-proving tasks. However, in other applications it can just as easily be
the other way around with the computational system performing subsidiary
equational reasoning tasks for the theorem prover.

Here we concentrate on computation. As motivation for what computation
actually means, consider the problem of determining the meaning of a term t
in the intended interpretation (for some application). If a formal definition of
the intended interpretation is available, then this problem can be solved (under
some finiteness assumptions). However, we assume here that the intended inter-
pretation is not available, as is usually the case, so that the problem cannot be
solved directly. Nevertheless, there is still a lot that can be done if the theory T

of the application is available and enough of it is in equational form. Intuitively,
if t can be ‘simplified’ sufficiently using T, its meaning may become apparent
even in the absence of detailed knowledge of the intended interpretation. For
example, if t can be simplified to a term containing only data constructors, then
the meaning of t will generally be obvious.

More formally, the computation problem is as follows.

Given a theory T, a term t, and a sequence �j1 · · ·�jr of modalities, find
a ‘simpler’ term t′ such that �j1 · · ·�jr∀(t = t′) is a consequence of T.

Thus t and t′ have the same meaning in all worlds accessible from the point
world in the intended interpretation according to the modalities �j1 · · · �jr .

Here now is the definition of a mechanism that addresses the computational
problem by employing equational reasoning to rewrite terms to ‘simpler’ terms
that have the same meaning. To simplify matters, we only consider the case
when the computation does not need to call on the theorem prover. (This is the
rank 0 case in [5].) In the following definition, a modal path to a subterm is the
sequence of indices of modalities whose scope one passes through when going
down to the subterm. A substitution is admissible if any term that replaces a
free occurrence of a variable that is in the scope of a modality is rigid.

Definition 6. Let T ≡ (G, L) be a theory. A computation using �j1 · · · �jr with
respect to T is a sequence {ti}n

i=1 of terms such that the following conditions are
satisfied.

1. For i = 1, . . . , n − 1, there is
(a) a subterm si of ti at occurrence oi, where the modal path to oi in ti is

k1 . . . kmi ,

Reflections on Agent Beliefs 135

(b) i. a formula �j1 · · ·�jr�k1 · · · �kmi
∀(ui = vi) in L, or

ii. a formula ∀(ui = vi) in G, and
(c) a substitution θi that is admissible with respect to ui = vi

such that uiθi is α-equivalent to si and ti+1 is ti[si/viθi]oi .

The term t1 is called the goal of the computation and tn is called the answer.
Each subterm si is called a redex.
Each formula �j1 · · · �jr�k1 · · ·�kmi

∀(ui = vi) or ∀(ui = vi) is called an
input equation.

The formula �j1 · · · �jr∀(t1 = tn) is called the result of the computation.

The treatment of modalities in a computation has to be carefully handled. The
reason is that even such a simple concept as applying a substitution is greatly
complicated in the modal setting by the fact that constants generally have differ-
ent meanings in different worlds and therefore the act of applying a substitution
may not result in a term with the desired meaning. This explains the restric-
tion to admissible substitutions in the definition of computation. It also explains
why, for input equations that are local assumptions, the sequence of modalities
�k1 · · · �kmi

whose scopes are entered going down to the redex must appear in
the modalities at the front of the input equation. (For input equations that are
global assumptions, in effect, every sequence of modalities that we might need
is implicitly at the front of the input equation).

In the general case, an input equation can also be a theorem that was proved
by the theorem-proving component of the reasoning system, as the examples
below show.

Here are two examples to illustrate various aspects of computation.

Example 5. Consider a belief base for an agent that contains the definition

B ∀x.((f x) =
if x = A then 42 else if x = B then 21 else if x = C then 42 else 0),

where A, B, C : σ, f : σ → Nat and B is the belief modality for the agent. With
such a definition, it is straightforward to compute in the ‘forward’ direction.
Thus (f B) can be computed in the obvious way to produce the answer 21 and
the result B((f B) = 21).

Less obviously, the definition can be used to compute in the ‘reverse’ direc-
tion. For example, consider the computation of {x | (f x) = 42} in Figure 2,
which produces the answer {A, C}. The redexes selected are underlined. This
computation makes essential use of the equations

(w if x then y else z) = if x then (w y) else (w z)
(if x then y else z w) = if x then (y w) else (z w)

from the standard equality theory.

136 J.W. Lloyd and K.S. Ng

{x | (f x) = 42}
{x | ((= if x = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42)}
{x | (if x = A then (= 42) else (= if x = B then 21 else if x = C then 42 else 0) 42)}
{x | if x = A then (42 = 42) else ((= if x = B then 21 else if x = C then 42 else 0) 42)}
{x | if x = A then � else ((= if x = B then 21 else if x = C then 42 else 0) 42)}
{x | if x = A then � else (if x = B then (= 21) else (= if x = C then 42 else 0) 42)}
{x | if x = A then � else if x = B then (21 = 42) else ((= if x = C then 42 else 0) 42)}
{x | if x = A then � else if x = B then ⊥ else ((= if x = C then 42 else 0) 42)}
{x | if x = A then � else if x = B then ⊥ else (if x = C then (= 42) else (= 0) 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then (42 = 42) else (0 = 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then � else (0 = 42)}
{x | if x = A then � else if x = B then ⊥ else if x = C then � else ⊥}

Fig. 2. Computation using B of {x | (f x) = 42}

Example 6. This example illustrates computation using a belief base that has
been obtained by incremental belief acquisition and that exploits modalities
acting on arbitrary terms. Consider an agent with belief modality B and a
belief base that includes definitions of the function f : σ → Nat at the current
time and some recent times. Suppose at the current time the part of the belief
base concerning f is as follows.

B ∀x.((f x) = if (p4 x) then (�f x) else if (p5 x) then 84 else 0)
�B ∀x.((f x) = if (p3 x) then (�f x) else 0)

�2B ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

�3B ∀x.((f x) = 0).

Three time steps ago, the function f was 0 everywhere. Two time steps ago, the
definition

B ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

for f was acquired. Then, one time step ago, the definition

B ∀x.((f x) = if (p3 x) then (�f x) else 0)

for f was acquired. This definition states that, on the region defined by p3, f is
the same as the f at the last time step; and, otherwise, f is 0. Finally, we come
to the current definition, which on the region defined by p4 is the same as the f
at the last time step; on the region defined by p5 is 84; and, otherwise, f is 0.
Definitions like these which use earlier definitions arise naturally in incremental

Reflections on Agent Beliefs 137

belief acquisition. A technical device needed to achieve incrementality is to admit
values of the form (�kf x), so that earlier definitions become available for use.
In turn this depends crucially on being able to apply modalities to arbitrary
terms, in this case, functions.

Now suppose t is a rigid term of type σ and consider the computation using
B of (f t) in Figure 3. Note how earlier definitions for f get used in the compu-
tation: at the step �(f t), the definition at the last time step gets used, and at
the step �2(f t), the definition from two time steps ago gets used.

(f t)

if (p4 t) then (�f t) else if (p5 t) then 84 else 0

...

if � then (�f t) else if (p5 t) then 84 else 0

(�f t)

�(f t)

�(if (p3 t) then (�f t) else 0)

...

�(if � then (�f t) else 0)

�(�f t)

�2(f t)

�2(if (p1 t) then 42 else if (p2 t) then 21 else 0)

...

�2(if � then 42 else if (p2 t) then 21 else 0)

�242

�42

42

Fig. 3. Computation using B of (f t)

Also needed in this computation is the instance (�f t) = �(f t) of the
global assumption discussed in Section 2. Incidentally, the assumption that the
argument to a function like f is rigid is a weak one; in typical applications, the
argument will naturally be rigid.

It is assumed that the belief base of the agent contains the global assumption

�Bϕϕϕ −→ B�ϕϕϕ.

138 J.W. Lloyd and K.S. Ng

Using this assumption, it can be proved that

B� ∀x.((f x) = if (p3 x) then (�f x) else 0)

and

B�2 ∀x.((f x) = if (p1 x) then 42 else if (p2 x) then 21 else 0)

are consequences of the belief base. These can then be used as input equations
in the computation.

The computation shows that B((f t) = 42) is a consequence of the belief
base. Thus the agent believes that the value of (f t) is 42; on the basis of this
and other similar information, it will select an appropriate action.

6 Conclusion

In this paper, we have reflected on some issues concerning beliefs for agents.
The main conclusion we draw from this is the value of using a highly expressive
logic for representing beliefs. Temporal and epistemic modalities allow beliefs to
capture information about an environment that can be crucial when an agent
is trying to select an appropriate action. For beliefs, propositional logic is not
particularly useful and so it is necessary to move beyond the propositional case;
we argue for the use of higher-order logic because of its extra expressive power.
In spite of the expressive power of the logic (which is of course undecidable), a
reasoning system in the form of a modal functional logic programming language
means that agents can effectively compute using their beliefs when selecting
actions. Thus reasoning during deployment of agents is substantially a program-
ming task rather than a theorem-proving task. We are currently working on some
challenging application domains for these ideas.

Acknowledgement

NICTA is funded through the Australian Government’s Backing Australia’s Abil-
ity initiative, in part through the Australian Research Council.

References

1. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

2. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. In: Studies in Logic and The Foundations of
Mathematics, vol. 148, Elsevier, Amsterdam (2003)

3. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530
(1985)

4. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

Reflections on Agent Beliefs 139

5. Lloyd, J.: Knowledge representation and reasoning in modal higher-order logic
(2007), http://users.rsise.anu.edu.au/∼jwl

6. Lloyd, J.: Logic for Learning. In: Cognitive Technologies, Springer, Heidelberg
(2003)

7. Lloyd, J., Sears, T.: An architecture for rational agents. In: Baldoni, M., Endriss,
U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 51–71.
Springer, Heidelberg (2006)

8. Rivest, R.: Learning decision lists. Machine Learning 2, 229–246 (1987)
9. Lloyd, J., Ng, K.S.: Learning modal theories. In: Muggleton, S., Otero, R.,

Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 320–334.
Springer, Heidelberg (2007)

10. Cole, J., Gray, M., Lloyd, J., Ng, K.S.: Personalisation for user agents. In: Dignum,
F., et al (eds.) AAMAS 2005. Fourth International Conference on Autonomous
Agents and Multiagent Systems, pp. 603–610 (2005)

11. Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer Academic Publishers, Dor-
drecht (2002)

http://users.rsise.anu.edu.au/~jwl

Modeling Agents’ Choices in Temporal Linear Logic

Duc Q. Pham, James Harland, and Michael Winikoff

School of Computer Science and Information Technology
RMIT University

GPO Box 2476V, Melbourne, 3001, Australia
{qupham,jah,winikoff}@cs.rmit.edu.au

Abstract. Decision-making is a fundamental feature of agent systems. Agents
need to respond to requests from other agents, to react to environmental changes,
and to prioritize and pursue their goals. Such decisions can have ongoing effects,
as the future behavior of an agent may be heavily dependent on choices made ear-
lier. In this paper we investigate a formal framework for modeling the choices of
an agent. In particular, we show how the use of a choices calculus based on tem-
poral linear logic can be used to capture distribution, temporal and dependency
aspects of choices.

1 Introduction

Agents are increasingly becoming accepted as a suitable paradigm for conceptualizing,
designing, and implementing the sorts of distributed complex dynamic systems that can
be found in a range of domains, such as telecommunications, banking, crisis manage-
ment, and business transactions [1].

A fundamental theme in agent systems is decision-making. Agents have to decide
which resources to use, which actions to perform, and which goals and commitments to
attend to in order to fulfill their design objectives as well as to respond to other agents in
an open and dynamic operating environment. Choices made now may very well affect
future achievement of goals or other threads of interactions. Accordingly, agents need
to be able to reflect on how their choices may affect future actions and interactions.

Moreover, in open and dynamic environments, changes from the environment occur
frequently and often are unpredictable, which can hinder the accomplishment of agents’
goals. How agents cope with changes remains an open and challenging problem. On the
one hand, agents should be able to reason about changes and act flexibly. On the other
hand, agents should be equipped with a reasoning ability to anticipate changes and act
accordingly.

These characteristics are desirable for a single agent. However, no agent is an is-
land, and decisions of an agent are not made in isolation, but in the context of decisions
made by other agents, and as part of interactions between agents. Thus, the challenging
setting here is that in negotiation and other forms of agent interaction, decision mak-
ing is distributed. In particular, key challenges in modeling decision making in agent
interaction are:

– Distribution: choices are distributed among agents, and changes from the envi-
ronment affect each agent in different ways. How to capture these choices, their

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 140–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Agents’ Choices in Temporal Linear Logic 141

dependencies and the effects of different strategies for their decisions as well as
to reason about the global changes at the individual level in agent systems are
important.

– Time: decision making by agents occurs over time, as do the choices to be made
and the changes in the environment. Hence it is necessary to deal with them in a
time-dependent manner.

– Dependencies: i.e. capturing that certain decisions depend on other decisions.

The central importance of decision-making in agent systems makes it natural to use
logic as a basis for a formal framework for agents. This means that we can model the
current state of an agent as a collection of formulas, and the consequences of a particular
action on a given state can be explored via standard reasoning methods. In this paper,
we explore how to extend this approach to include decisions as well as actions. Hence,
for logic-based agents, whose reasoning and decision making is based on a declarative
logical formalism, it is important to model the decision making about choices and about
environment changes.

This paper tackles the modeling of agent decisions in a way that allows distribution,
dependencies, and time of choices to be captured. We discuss specific desirable proper-
ties of a formal model of agent choices (section 3) and present a formal choice calculus
(section 5). We then consider an application of the choice calculus. Specifically, by en-
suring that the choices are made in multiple different formulas consistently, the choice
calculus allows us to turn an interaction concerning a goal into multiple concurrent and
distributed threads of interaction on its subgoals. This is also based on a mechanism to
split a formula Γ which contains A into two formulas, one of which contains A, the
other contains the results of “subtracting” A from Γ .

In [2], it was shown how Temporal Linear Logic (TLL) can be used to model agent
interactions to achieve flexibility, particularly due to its ability to model resources and
choices, as well as temporal constraints. This paper can be seen as further developing
this line of work to include explicit considerations of the choices of each agent and the
strategies of dealing with them.

The remainder of this paper is structured as follows. Section 2 briefly reviews tem-
poral linear logic, and the agent interaction framework. The following three sections
motivate and present the choice calculus. Section 6 presents an application of the choice
calculus to distributed concurrent problem solving. We then conclude in section 7.

2 Background

2.1 Temporal Linear Logic

Temporal Linear Logic (TLL) [3] is the result of introducing temporal logic into lin-
ear logic. While linear logic provides advantages for modeling and reasoning about
resources, temporal logic addresses the description and reasoning about the changes of
truth values of logic expressions over time [4]. Hence, TLL is resource-conscious as
well as dealing with time.

In particular, linear logic [5] is well-known for modeling resources as well as updat-
ing processes. It has been considered in agent systems to support agent negotiation and
planning by means of proof search [6,7].

142 D.Q. Pham, J. Harland, and M. Winikoff

In multi-agent systems, resource production and consumption processes are funda-
mental. In a logic such as classical or temporal logic, however, a direct mapping of
resources onto formulas is troublesome. If we model resources like A as “one dollar”
and B as “a chocolate bar”, then A, A ⇒ B in classical logic is read as “given one dol-
lar we can get a chocolate bar”. The problem is that A - one dollar - remains afterward.
In order to resolve such resource - formula mapping issues, Girard proposed treating
formulas as resources and hence they will be used exactly once in derivations.

As a result, classical conjunction (and) and disjunction (or) are recast over different
uses of contexts - multiplicative as combining and additive as sharing to come up with
four connectives. In particular, A ⊗ A (multiplicative conjunction) means that one has
two As at the same time, which is different from A∧A = A. Hence, ⊗ allows a natural
expression of proportion. A � B (multiplicative disjunction) means that if not A then B
or vice versa but not both A and B.

The ability to specify choices via the additive connectives is also a particularly use-
ful feature of linear logic. If we consider formulas on the left hand side of � as what
are provided (program formulas), then A � B (additive conjunction) stands for one’s
own choice, either of A or B but not both. A ⊕ B (additive disjunction) stands for the
possibility of either A or B, but we don’t know which. In other words, while � refers to
inner determinism, ⊕ refers to inner non-determinism. Hence, � can be used to model
an agent’s own choices (internal choices) whereas ⊕ can be used to model indeter-
minate possibilities (or external choices) in the environment. The duality between �

and ⊕, being respectively an internal and an external choice, is a well-known feature
of linear logic [5]. Indeed, internal choices and external choices have been modeled
previously using Linear Logic [6,8] and TLL [9,2].

Due to the duality between formulas on two sides of �, formulas on the right side
can be regarded as goal formulas, i.e. what is to be derived. A goal A � B means that
after deriving this goal, one can choose between A or B. In order to have this ability
to choose, one must prepare for both cases - being able to derive A and derive B.
On the other hand, a goal A ⊕ B means a goal A or a goal B and which one is not
yet determined. Hence, one can choose to derive either of them. In terms of deriving
goals, � and ⊕ among goal formulas act as introducing indeterminate possibilities and
introducing an internal choice respectively.

The temporal operators used are � (next), � (anytime), and � (sometime) [3]. For-
mulas with no temporal operators can be considered as being available only at present.
Adding � to a formula A, i.e. �A, means that A can be used only at the next time point
and exactly once. Similarly, �A means that A can be used at any time (exactly once,
since it is linear). �A means that A can be at some time (also exactly once). Whilst the
temporal operators have their standard meanings, the notions of internal and external
choice can be applied here as well, in that �A means that A can be used at any time
(but exactly once) with the choice of time being internal to the agent, and �A means
that A can be used at some time with the choice of time being external to the agent.

The semantics of TLL connectives and operators as above are given via its sequent
calculus, since we take a proof-theoretic approach in modeling agent interaction. The
rules for � and �L are below. The full set of rules for TLL includes rules for �R and� (which are not used in this paper), and all of the rules for linear logic [3].

Modeling Agents’ Choices in Temporal Linear Logic 143

!Γ, �Δ, Ξ � A,Φ, �Λ, ?Π

!Γ, �Δ, �Ξ � �A,� Φ, �Λ, ?Π
�

A, Γ � Δ

�A, Γ � Δ
�L

2.2 A Model for Agent Interaction

In [9], an interaction modeling framework which uses Temporal Linear Logic (TLL) as
a means of specifying interaction protocols is used as TLL is natural to model resources,
internal choices and indeterminate possibilities with respect to time. Various concepts
such as resource, capability and commitment/goal are encoded in TLL. The symmetry
between a formula and its negation in TLL is explored as a way to model resources and
commitments/goals. In particular, formulas to be located on the left hand side of � can
be regarded as formulas in supply (resources) while formulas to be located on the right
hand side of � as formulas in demand (goals).

A unit of consumable resources is then modeled as a proposition in linear logic
and can be preceded by temporal operators to address time dependency. For example,
listening to music after (exactly) three time points is denoted as � � �music. A
shorthand is �

3music.
The capabilities of agents refer to producing, consuming, relocating and changing

ownership of resources. Capabilities are represented by describing the states before
and after performing them. The general representation form is Γ � Δ, in which Γ
describes the conditions before and Δ describes the conditions after. The linear im-
plication � ensures that the conditions before will be transformed into the conditions
after.

To take an example, consider a capability of producing music using a music player
to play music files. There are two options available at the agent’s own choice, one is
using an mp3 player to play mp3 files, the other is using a CD player to play CD files.
The encoding is:

�[[(mp3 ⊗ mp3 player) ⊕ (CD ⊗ CD player)] � music]1

where � means that the capability can be applied at any time, ⊕ indicates an internal
choice (not �, as it is located on the left hand side of �).

3 Desiderata for a Choice Calculus

Unpredictable changes in the environment can be regarded as a set of possibilities for
which the agents do not know the outcomes. There are several strategies for dealing
with unpredictable changes. A safe approach is to prepare for all the possible scenarios,
at the cost of extra reservation and/or consumption of resources. Other approaches are
more risky in which agents make a prediction of which possibilities will occur and
act accordingly. If the predictions are correct, agents achieve the goals with resource
efficiency. Here, there is a trade-off between resource efficiency and safety.

1 In the modeling, formulas representing media players are consumed away, which does not
reflect the persistence of physical objects. However, we focus on modeling how resources are
utilized for interaction, not their physical existences and hence simplify the encoding since it
is not necessary to have the media players retained for later use.

144 D.Q. Pham, J. Harland, and M. Winikoff

In contrast to indeterminate possibilities, internal choices can decided by the agents
themselves. Decisions on internal choices can be based on what is best for the agents’
current and local needs. However, it is desirable that they consider internal choices in the
context of other internal choices that have been or will be made. This requires an ability
to make an informed decision on internal choices. If we put information for decision
making on internal choices as constraints associated with those internal choices then
what required is a modeling of internal choices with their associated constraints such
that agents can reason about them and decide accordingly.

In addition, as agents act in time, decisions can be made precisely at the required time
or can be well prepared in advance. When to decide and act on internal choices should
be at the agents’ autonomy. The advantages of deciding internal choices in advance can
be seen in an example as resolving a goal of �

3(A⊕B). This goal involves an internal
choice (⊕) to be determined at the third next time point (�3). If the agent decides now
to choose A and commits to making the same decision at the third next time point,
then from now, the agent only has to focus on the goal of �

3A. This also means that
resources used for other goals can be guaranteed to be exclusive from the requirements
of �

3(A ⊕ B).
The following example illustrates various desirable strategies of agents.
Peter intends to organize an outdoor party in two days time. He has a goal of pro-

viding music at the party. He also has a blank CD which he can use with his CD burner
to burn music in CD format or mp3 format. His friend, John, can help by bringing a
CD player or an mp3 player to the party but Peter does not know which until tomorrow.
In addition, there is an external request that David wants to borrow Peter’s CD burner
today. Peter needs to consider achieving his goal and whether to let David borrow the
CD burner.

In this situation, to Peter, there is an internal choice on the music format and an
indeterminate possibility regarding the player. We consider two strategies for Peter. If
Peter does not let David borrow the CD Burner, he can wait until tomorrow to learn
what John will bring to the party and choose the music format to burn accordingly at
that time. Otherwise, if he wants to let David borrow the CD Burner, he can not delay
burning the CD until tomorrow and so has to make a prediction on which player John
will bring to the party, then decide the choice on the music format and burn the CD
early (now). This corresponds to the second strategy. The question is then how to make
such strategies available for agent Peter to explore.

An important observation to make is that although (temporal) linear logic captures
the notions of internal choice and indeterminate possibility, its sequent rules constrain
decision making on them to certain strategies and to be done in isolation (subject only
to local information). Specifically, consider the following rules of standard sequent
calculus:

Γ, A � Δ Γ, B � Δ

Γ, A ⊕ B � Δ

Γ � A, Δ Γ � B, Δ

Γ � A � B, Δ (set1)

Γ, A � Δ

Γ, A � B � Δ

Γ, B � Δ

Γ, A � B � Δ

Γ � A, Δ

Γ � A ⊕ B, Δ

Γ � B, Δ

Γ � A ⊕ B, Δ (set2)

The first set of rules (set 1) reflects the strategy that agents prepare for all outcomes
of indeterminate possibilities. Though applying the strategy is safe, it requires extra

Modeling Agents’ Choices in Temporal Linear Logic 145

and unnecessary resources and actions. Moreover, the strategy does not take into ac-
count agents’ predictions of the outcomes of some indeterminate possibilities in the
environment (in our example it is Peter’s prediction of the player) and whether agents
are willing to take some risks by following their predictions. This also means that the
notion of proof needs to be extended to allow for cases where it is not necessary for the
proof to cover all possible outcomes of indeterminate possibilities but only their actual
outcomes.

The second set of rules (set 2) reflects agents’ decisions on internal choices at their
associated times. According to these rules, internal choices are determined freely, with-
out any guidance or constraints. Hence, such decisions on these choices may not be
optimal. For example, if an agent decides an internal choice A � B to be A, and later
realizes there are some goals that requires B then it misses the chance to obtain the nec-
essary resource B. Hence, it is important how information such as possible future goals
or information on any constraints or dependencies among choices should be included
in agents’ consideration of decisions on internal choices. However, the sequent rules do
not allow agents to explore the strategy of deciding choices in advance.

Referring to our running example, in the first strategy, Peter does not let David bor-
row the CD burner, and so Peter can then find a proof using standard sequent rules to
achieve the goal of providing music at the party two days later. However, in the second
strategy, the search using standard TLL sequent calculus for a proof of the goal fails as
it requires Peter to have music in both formats (mp3 and CD) so as to be matched with
the future possibility of the media player.

Hence, in this paper, we investigate how we can use TLL not only to model the dif-
ference between internal choice and indeterminate possibility with respect to time, but
also to capture dependencies among choices, constraints on how choices can be made
and predictions and decisions of indeterminate possibilities. Such constraints may also
reflect global consideration of other goals and other threads of interaction. We further
consider strategies that can be used to deal with choices with respect to time, reflecting
how cautious the agents are and whether the agents deal with them in advance. How-
ever, we will not discuss how agents can predict the environment outcomes correctly.

4 Modeling Decisions on Choices

In this section, we consider the modeling of choice decisions, how to express constraints
on choice decisions, and their dependency on other choices’ decisions.

If we assume that the order of the operants is unchanged throughout the process
of formula manipulation, then the decision on choices and indeterminate possibilities
can be regarded as selecting the left hand side or the right hand side of the connective.
For simplicity of discussion, we shall refer to both internal choices and indeterminate
possibilities simply as choices unless it is important to mention them distinctly.

Each choice is associated with a particular time point. Due to the inherent property
of TLL that formulas denoted at a specific time point exist only at that time point and
becomes invalid after that time point, we assume that outcomes of choices must be re-
vealed at their associated times. Regarding internal choices, to support agents being able
to decide them in advance we assume that agents can make decisions early and keep

146 D.Q. Pham, J. Harland, and M. Winikoff

those decisions unchanged until the decisions become effective. Regarding indetermi-
nate possibilities, we assume that their outcomes are determined by the environment (or
external factors) at their associated times and only at these times, the outcomes become
known to agents. For example, given an indeterminate possibility �

3(A ⊕ B), at the
third next time point, the environment determines the possibility such that �

3(A ⊕ B)
becomes �

3A or becomes �
3B.

Hence, for a given choice at the time �
x, x > 0, there are three distinct states — not

determined, decided on left, and decided on right.
In what follows, we have restricted the use of the temporal operators to be � only.

This is due to some technical issues with the formal results about the choice calculus
when � and � are included. A full exploration of this issue is beyond the scope of this
paper. Here we note that whilst we restrict the choice calculus to exclude � and � in this
paper, we can regain some of their functionality by the use of �

x, for an appropriate
term x.

We use the notation
�x
↪→ or

⊕x
↪→ to record the results of agents’ decision making or

outcomes on the choices �x and ⊕x respectively. The subscript indicates the ID of the
connective. Base values for choice decisions can be encoded by TLL propositions as L
for deciding on the left, and R for deciding on the right. For example, the base value

for a decision on A � B is L (denoted as
�

↪→= L) if A results from deciding the choice

A � B (by agents or by the environment) and is R (
�

↪→= R) if B results. Formally, we

write � �1
↪→� L or

�1
↪→ � L to denote that the left sub-formula of �1 was selected.

Regarding internal choices, their decisions can be regarded as variables on which
agents can decide the assignment of values. On the other hand, outcomes of indetermi-
nate possibilities are not determined by agents but by external factors.

By modeling choices’ decisions explicitly, we can state constraints between them.

For example, if two choices,
�x
↪→ and

�y

↪→, need to be made consistently — either both

right or both left — then this can be stated as
�x
↪→=

�y

↪→ or in logic encoding,
�x
↪→ �

�y

↪→,
�x
↪→

�
�y

↪→.
More generally, we can state that a given internal choice �x (or ⊕x) should depend

on a combination of other choices or some external constraints. We use condLx (respec-
tively condRx) to denote the condition that should hold for the left side (respectively
right side) of the internal choice to be taken. Clearly, satisfaction of condLx means
condRx cannot be satisfied and vice versa. In other words, they should always be mu-
tually exclusive. These conditions completely determine the results of the choices’ de-
cisions. We encode these conditions as TLL sequents so that sub-conditions (sequents)
can be found via proof search.

Moreover, composite formulas, in general, contain sub-formulas that are interrelated,
such as independently co-existing or mutually exclusive due to the choices between
them. A sub-formula may be removed or retained after choices in the composite formula
are decided. It is then important to make readily available the conditions on which a sub-
formula of interest is retained or removed. Based on such information, agents would be
able to judge the significance of a compound formula w.r.t retaining the sub-formula of
interest and exercise various strategies in dealing with the compound formula.

Modeling Agents’ Choices in Temporal Linear Logic 147

In particular, given a formula Γ which contains a sub-formula A, we can compress
the sequence of decisions that need to be made in order to obtain A from Γ into a single
representative choice. For example, if Γ = B �1 �

a(�b(A ⊕2 C) �3 D) then, in
order to obtain A from Γ we need to decide on the right side of �1, then, a time units
later, decide on the left side of �3, and b time units after that, have the left side of ⊕2
be selected by the environment (an indeterminate possibility). Formally, the notion of
representative choice is defined as below.

Definition 1 (Representative Choice). A representative choice �r with respect to a
formula A in a compound program formula (respectively goal formula) Γ is a choice
�

xA�r�
y1 (respectively �

xA⊕r�
y1) whose decision is L if �

xA is retained from
Γ after choices in Γ are decided and is R otherwise (where �

y1 is retained instead),
where x ≥ 0 is the time associated with A in Γ and y ≥ 0 is the time point associated
with 1.

Note that at the time of representing the choice �r (or ⊕r), the value of y is not known.
It will be known after all the decisions of internal choices and indeterminate possibilities
in Γ are revealed.

In the previous example, such a sequence of decisions on internal choices and inde-
terminate possibilities on Γ to obtain A can be captured by the sequent:

� (
�1
↪→� R) ⊗ �

a(
�3
↪→� L) ⊗ �

a+b(
⊕2
↪→� L).

This is the determining condition for A to be obtained from Γ . Observe that we can
compress Γ into a representative choice for A of the form (�a+bA �r �

y) such that
the choice �r is decided left if �

a+bA results from Γ and is decided right otherwise.
The condition above then corresponds to condLr of �r. Being mutually exclusive,

condRr is captured as: � (
�1
↪→� L) ⊕ �

a(
�3
↪→� R) ⊕ �

a+b(
⊕2
↪→� R).

We now come to determine sequent calculus rules for various strategies on choices.

5 A Choice Calculus

When it comes to indeterminate possibilities, proof searches using standard sequent
calculus rules reflect the strategy of preparing all possible cases and do not allow agents
to take risks by preparing only the anticipated cases. We need to extend the sequent
calculus rules to accommodate such a strategy of risk taking.

In particular, we need to provide the proof steps in which agents can make predic-
tions on the outcomes of indeterminate possibilities and follow only the search paths
corresponding to the predicted ones. In other words, we need to provide inference rules
for dealing with indeterminate possibilities such that the agents can decide on a par-
ticular branch to follow in proof search rather than preparing for all branches. We also
need to keep track of the predictions that agents make. Such sequent rules are of the
following forms:

Γ �cc F, Δ [��n
↪→� L]

Γ �cc F�nG, Δ

Γ �cc G, Δ [��n
↪→� R]

Γ �cc F�nG, Δ

148 D.Q. Pham, J. Harland, and M. Winikoff

Γ, F �cc Δ [�⊕n
↪→� L]

Γ, F ⊕n G �cc Δ

Γ, G �cc Δ [�⊕n
↪→� R]

Γ, F ⊕n G �cc Δ

Note that �cc means � in the choice calculus context, and that a prediction on the
outcome of an indeterminate possibility is expressed in square brackets. A prediction
can be thought as an assumption that the search technique relies on and it needs to
be checked with the actual outcome(s). If the assumptions are correct then success-
ful searches on the corresponding branches that rely on them constitute a proof. If the
assumptions are not correct, even though the searches are successful, then the corre-
sponding plan is not sound. Here, we take the notion of proof as that the search using
these extended inference rules above is successful and hence soundness of the proof
depends on the assumptions (agents’ predictions). We will further discuss how such
proofs using extended inference rules are related to those proofs using only standard
sequent calculus rules in theorems 1 and 2.

Moreover, we consider allowing agents to decide upon an indeterminate possibility
beforehand, which is not available if using only the standard sequent rules of TLL.
What is needed is inference rules that permit agents to follow only the branches that
correspond to their predictions on the indeterminate possibilities. Such rules are of the
following forms. As above, predictions are kept aside in square brackets.

Γ �cc �
nF, Δ [� �

n(
�n
↪→� L)]

Γ �cc �
n(F�nG), Δ

Γ �cc �
nG, Δ [� �

n(
�n
↪→� R)]

Γ �cc �
n(F�nG), Δ

Γ, �nF �cc Δ [� �
n(
⊕n
↪→� L)]

Γ, �n(F ⊕n G) �cc Δ

Γ, �nG �cc Δ [� �
n(
⊕n
↪→� R)]

Γ, �n(F ⊕n G) �cc Δ

Internal choices can be decided by the owner agent at the time associated with the
choices, subject to any constraints (condLn or condRn) imposed on them. Accordingly,
we derive new sequent rules for internal choices to reflect that such constraints need to
be followed by attaching the corresponding conditions to the proof search steps. The
new sequent rules are:

Γ, F �cc Δ (condLn)
Γ, F�nG �cc Δ

Γ, G �cc Δ (condRn)
Γ, F�nG �cc Δ

Γ �cc F, Δ (condLn)
Γ �cc F ⊕n G, Δ

Γ �cc G, Δ (condRn)
Γ �cc F ⊕n G, Δ

where condLn (respectively condRn) are conditions imposed on the internal choice n
for the choice to be decided left (respectively right). These conditions may be absent.
In their absence, the internal choices are truly free choices and the standard inference
rules are used.

Moreover, if the agent is to decide the choice in advance, it can bring out the choice’s
outcome earlier in the search. Similarly to those rules that allow agents to deal with
indeterminate possibilities ahead of time, the rules needed should permit the agents to
follow a branch of choice while keeping track of the associated conditions. They are of
the forms:

Modeling Agents’ Choices in Temporal Linear Logic 149

Γ, �nF �cc Δ (condLn)
Γ, �n(F�nG) �cc Δ

Γ, �nG �cc �
nΔ (condRn)

Γ, �n(F�nG) �cc �
nΔ

Γ �cc �
nF, Δ (condLn)

Γ �cc �
n(F ⊕n G), Δ

Γ �cc �
nG, Δ (condRn)

Γ �cc �
n(F ⊕n G), Δ

These above new sequent rules, together with standard TLL sequent rules, form the
choice calculus.

Considering our running example, recall that if Peter is to let David borrow the CD
burner now, then he needs to make a prediction on the player that John will possibly
bring and based on the prediction, decides on the indeterminate possibility early. For

instance, Peter predicts that John will provide an mp3 player (i.e. � �(
⊕3
↪→� L)).

Using the choice calculus, this is captured by the following inference:

Γ, �2mp3p �cc �
2m [� �(

⊕3
↪→� L)]

Γ, �(�mp3p ⊕3 �cdp) �cc �
2m

where Γ is some formula in the proof, mp3p = mp3 player, cdp = CD player, and
m = music.

Based on this prediction, Peter decides on the choice of mp3 music format now and

burns the blank CD accordingly. The imposed condition for the choice �1 is � �(
⊕3
↪→�

L). Such decision with a constraint is reflected in the following proof step in the choice
calculus.

Γ, �mp3 � Δ (� �(
⊕3
↪→� L))

Γ, �mp3 �1 �cd � Δ

where Γ and Δ are some formulas in the proof.
By taking the risk in following his prediction, Peter then successfully obtains a proof

of CD Burner ⊗ �
2m. If his prediction is correct then a successful plan is obtained

to achieve his goal. The proof is given in figure 1, where some inferences combine a
number of rule applications.

In this example we begin (bottom-most inference) by making an “in-advance” deci-
sion of the indeterminate possibility ⊕3, specifically we predict that John will provide
an mp3 player. We then decide on the format mp3. When the time comes to make a
decision for ⊕2 we can select to use the mp3 player to produce music. As the condition

for these choices, � �(
⊕3
↪→� L), is the same as the condition of the prediction on ⊕3,

we omit it for readability.
As can be seen from the example, internal choices and indeterminate possibilities

are properly modeled with respect to time. Moreover, several strategies are enabled for
Peter due to the use of the choice calculus. If Peter is to take a safe approach, he should
delay deciding the music format until tomorrow and ignore David’s request. If Peter is
willing to take risks, he can predict the indeterminate possibility of which player John
will bring to the party and act accordingly. Peter can then decide the choice on music
early so as to lend David the CD burner.

Hence, these sequent calculus rules are in place to equip agents with various strate-
gies for reasoning to deal with indeterminate possibilities and internal choices. These

150 D.Q. Pham, J. Harland, and M. Winikoff

cdb � cdb

mp3 � mp3 mp3p � mp3p

mp3, mp3p � mp3 ⊗ mp3p
⊗

mp3, mp3p � (mp3 ⊗ mp3p) ⊕2 (cd ⊗ cdp)
⊕2

�mp3, PP, �2mp3p � �
2m

�
2, �, �

cdb, �mp3, PP, �2mp3p � cdb ⊗ �
2m

⊗

cdb, �mp3 �1 �cd, PP, �2mp3p � cdb ⊗ �
2m

�1

PR,PP, PB, �2mp3p � cdb ⊗ �
2m

⊗, �, �
[� �(

⊕3
↪→� L)]

JR, PP, PR,PB � cdb ⊗ �
2m

⊕3

where JR = �[�mp3p ⊕3 �cdp]
PP = �[[(mp3 ⊗ mp3p) ⊕2 (cd ⊗ cdp)] � m]
PR = �Blank CD ⊗ �CD Burner
PB = �[Blank CD ⊗ CD Burner � CD Burner ⊗ (�mp3 �1 �cd)]
cdb = CD Burner

Fig. 1. Proof of CD Burner ⊗ �
2music

strategies make it more flexible to deal with changes and handle exceptions with global
awareness and dependencies among choices. In the next section, we explore an appli-
cation of such modeling of choices and their coping strategies, especially dependencies
among choices, to distributed problem solving in a flexible interaction modeling TLL
framework [9]. But first, we show that proofs using the additional rules are, in a sense,
equivalent to proofs in the original TLL sequent calculus.

The intuition behind the soundness and completeness properties of proofs using these
additional rules with respect to proofs which only use original TLL sequent calculus is
that eventually indeterminate possibilities like between A and B will be revealed as the
outcome turns out to be A or B. Hence, if the agents have made the right predictions and
followed them then they have successfully dealt with these indeterminate possibilities.

The soundness and completeness properties are then evaluated and proved in this
context. In particular, we introduce the concept of a revealed proof, which has all the in-
ternal choices and indeterminate possibilities replaced by their actual outcomes. Proofs
under the choice calculus are then examined in relation to their corresponding revealed
proofs. They are sound if all the assumptions they rely on turn out to be correct. If the
assumptions turn out to be unfounded, then the proofs under the choice calculus are not
valid.

Definition 2 (Revealed Proof). The revealed proof corresponding to a given proof
of Γ � Δ is the proof resulting from replacing all occurrences of choices with the
actual outcomes of these choices. That is, any formula F ⊕ G corresponding to an
indeterminate possibility is replaced by either F or G, corresponding to the decision
that was made by the environment; and any formula F �G corresponding to an internal
choice is replaced by either F or G, corresponding to the choice that was made by the
agent.

Modeling Agents’ Choices in Temporal Linear Logic 151

Theorem 1 (Soundness). Let P be a proof of Γ �cc Δ under the choice calculus
where Γ and Δ are multisets of TLL formulas. Let rev(Γ), rev(Δ) and rev(P) be
the outcomes of replacing all the choices in Γ , Δ and the proof P by their actual
outcomes respectively. If all the conditions associated with the additional inference
rules on choices in P are correct,

rev(Γ) � rev(Δ)

is then provable under standard TLL sequent calculus by the proof rev(P).

Proof sketch: All of the additional rules introduced by the choice calculus disappear
when the proof is made into a revealed proof. For example, consider the rules (on the
left) which are replaced in a revealed proof, where F � G is replaced by F , by the
identities on the right.

Γ �cc F, Δ [L � L �n R]
Γ �cc F �n G, Δ

Γ � F, Δ

Γ � F, Δ

Γ �cc �
xF, Δ [L � L �n R]

Γ �cc �
x(F �n G), Δ

Γ � �
xF, Δ

Γ � �
xF, Δ

Γ, F �cc Δ

Γ, F �n G �cc Δ

Γ, F � Δ

Γ, F � Δ

Once these identity rules are eliminated, a standard TLL proof results. �
Theorem 2 (Completeness). A proof using standard TLL sequent calculus rules is also
a proof under the choice calculus.

Proof: As the choice calculus also contains all of the standard TLL sequent calculus
rules, the completeness property holds trivially. �
6 Splitting a Formula

Interaction between agents is often necessary for the achievement of their goals. In the
above example with Peter and John, if Peter had a CD player of his own, he would
not need to interact with John in order to have music at the party. In general, it will be
necessary for an agent to co-ordinate interaction with many different agents while the
precise number and identity of which may not be known in advance. In order to achieve
this, in this section we investigate a mechanism for partial achievement of a goal. In
particular, this is a process of decomposing a given TLL goal formula into concurrent
subgoals.

For example, assume that Peter now has the additional goal of having either Chinese
or Thai food at the party. Deriving which goal - Chinese food (abbreviated as C) or
Thai food (abbreviated as T) - is an internal choice (⊕3). Peter’s goal is then

CD Burner ⊗ �
2[music ⊗ (C ⊕3 T)]

However, Peter can not provide food, but his friends, Ming and Chaeng, can make
Chinese food and Thai food respectively. Hence, this goal can not be fulfilled by Peter
alone but involves interaction with John and David as above and also Ming or Chaeng.

152 D.Q. Pham, J. Harland, and M. Winikoff

If this goal is sent as a request to any one of them, none would be able to fulfill the goal
in its entirety. Hence, it is important that the goal can be split up and achieved partially
via concurrent threads of interaction. In this case, we would split this into the sub-goal
CD Burner ⊗ �

2music, which is processed as above, the sub-goal �
2C ⊕4 �

21,
which is sent as a request to Ming, and the sub-goal �

21 ⊕4 �
2T , which is sent as a

request to Chaeng. The choice ⊕4 will be later determined consistently with ⊕3.
Hence we need to be able to split a goal into sub-goals, and to keep track of which

parts have been achieved. In particular, it is useful to isolate a sub-goal from the rest of
the goal. We do this by taking the overall formula Γ and separating from it a particular
sub-formula A. We show how this can be done in the fragment, denoted as MCA, which
contains the connectives ⊗, ⊕, �, � and the units 1, ⊥.

The split-ups of a formula Γ with respect to the formula A that Γ contains are the
two formulas Γ̂ − A and Â, which are defined below.

Γ̂ − A is the formula Γ which has undergone a single removal or substitution of (one
occurrence of) A by 1 while the rest is kept unchanged. Specifically, where A resides
in the structure of Γ , the following mapping is applied to A and its directly connected
formulas Δ. Δ is any TLL formula and x ≥ 0.

1. A �→ 1
2. �

xA �→ �
x1

3. �
xA op Δ �→ �

x1 op Δ for op ∈ {⊗, �, ⊕}

Here, we further apply the equivalence 1 ⊗ Δ ≡ Δ so that �
xA ⊗ Δ �→ Δ.

The formula Â is determined recursively as a result of a split up process.
Â = SPLITUP(Γ, A), where SPLITUP(Γ, A) is defined as follows:

– if Γ = A, then SPLITUP(Γ, A)= A
– if Γ = �Γ ′, then SPLITUP(Γ, A) = � SPLITUP(Γ ′, A)
– if Γ = Γ ′ ⊗ Δ, then SPLITUP(Γ, A) = SPLITUP(Γ ′, A)
– if Γ = Γ ′ �n Δ, then SPLITUP(Γ, A) = SPLITUP(Γ ′, A) �n 1
– if Γ = Γ ′ ⊕m Δ, then SPLITUP(Γ, A) = SPLITUP(Γ ′, A) ⊕m 1

where n, m are some numbers representing IDs of choices, Γ ′ is a sub-formula of Γ , A
occurs in Γ ′ but does not occur in Δ.

Another view is that Â is obtained by recursively replacing formulas that rest on the
other side of connective (to the formula that contains A) by 1 if the connective is ⊕ or
� and removing them if the connective is ⊗.

It can be seen from the formulation of Γ̂ − A and Â that there are requirements of
choice dependencies among the split ups. Indeed, all the corresponding choices and pos-
sibilities in them must be consistent. In particular, decisions made on the corresponding
choices and possibilities in Γ̂ − A, and Â should be the same as those that would have
been made on the corresponding ones in Γ . Indeed, if A ever results from Γ by a se-
quence of choices and possibilities in Γ being decided, then those decisions also make
Â become A.

As an example, we return to our running example and consider Peter’s goal formula.
The goal G = CD Burner ⊗ �

2[music ⊗ (C ⊕3 T)] can be split into:

[Ĝ − C] = CD Burner ⊗ �
2[music ⊗ (1 ⊕3 T)] and Ĉ = �

2(C ⊕3 1).

Modeling Agents’ Choices in Temporal Linear Logic 153

Subsequently, Ĝ − C can be split into:
[̂G − C − T] = CD Burner ⊗ �

2music and T̂ of Ĝ − C is �
2(1 ⊕3 T).

In general, Â can result in �
xA or �

y1, x, y ≥ 0, as a result of having all the
choices in Â decided. In the following theorem, we show that Â can be compressed
into a representative choice (of A in Â) of the form �

xA �r �
y1.

Theorem 3. Let Γ be a formula in the fragment MCA and Â be its split up w.r.t A in
Γ . We have that Â is equivalent to the representative choice w.r.t. A, i.e. that

Â �cc �
aA �r �

b1

and

�
aA �r �

b1 �cc Â

where a indicates the corresponding time of the existence of A, and b is an appropriate
time depending on the outcomes of choices in Â.

Proof: by induction on the structure of Â. We highlight a few cases of the proof for
Â �cc �

xA �r �
y1. The others are similar.

Base step: Â = A, hence x = 0, the choice is decided left, and we have A �cc A.

Induction step: Assume the hypothesis is true for n, so that Ân �cc �
nA �n �

y1 is
provable, which means that we have either of the following proofs:

....
Ân �cc �

nA [� condLn]

Ân �cc �
nA �n �

y1
�n

....
Ân �cc �

y1 [� condRn]

Ân �cc �
nA �n �

y1
�n

We show the case for Ân+1 = Ân �1 1 below, the other cases �Ân, and Ân ⊕2

1 are similar. In this case, we need to prove Ân �1 1 �cc �
nA �n+1 �

y1, where

condLn+1 = condLn ⊗ (
�1
↪→� L); and condRn+1 = condRn ⊕ (

�1
↪→� R).

.

.

.

.
Ân �cc �

nA [� condLn]

Ân �1 1 �cc �
nA [� condLn ⊗ (

�1
↪→� L)]

�1

Ân �1 1 �cc �
nA �n+1 �

y1
�n+1

.

.

.

.
Ân �cc �

y1 [� condRn]

1 �cc 1(y = 0)

1 �cc �
y1

Ân �1 1 �cc �
y1 [� condRn ⊕ (

�1
↪→� R)]

�1

Ân �1 1 �cc �
nA �n+1 �

y1
�n+1

where the value of y is assigned as appropriately in the proof. Note that both cases of
the decision on �1 are proved. �
Applying this theorem to the above example, we can obtain further results:
Ĉ = �

2(C ⊕3 1) = �
2C ⊕4 �

21,

T̂ (of Ĝ − C) = �
2(1 ⊕3 T) = �

21 ⊕4 �
2T , where ⊕4 is the representative choice

and is of the same decision as ⊕3 at the second next time point.
The equivalence relationship between Γ and its split ups, Γ̂ − A and Â, is estab-

lished by the following theorems. The first theorem shows that Γ̂ − A, Â � Γ , and
the subsequent two theorems show, roughly speaking, the reverse direction, i.e. that
Γ � Γ̂ − A ⊗ Â.

154 D.Q. Pham, J. Harland, and M. Winikoff

Theorem 4. Let Γ be a formula in the fragment MCA that contains A, where Γ is split
up into Â and Γ̂ − A w.r.t A, where Â contains A and Γ̂ − A is the remainder. Then

Â, Γ̂ − A �cc Γ .

That is, the multiplicative conjunction of the split ups of Γ via A can derive Γ .

Proof (sketch): by induction on the size of Γ . We highlight a few cases of the proof. The
others are similar.

Base step: Γ = A. We need to prove A, 1 �cc A, which is obvious.

Induction step: Assume the hypothesis is true for Γ of size n, so that Ân, ̂[Γ − A]n �cc

Γ n.

We need to prove that this holds for the size n + 1 by reducing the n + 1 case to the
hypothesis using relevant proof steps. We show the case for Γ n+1 = Γ n

�1 Δ below;
the other cases (�xΓ n, Γ n ⊗ Δ and Γ n ⊕2 Δ) are all similar. In this case we have

̂[Γ − A]n+1 = ̂[Γ − A]n �1 Δ, and Ân+1 = Ân �1 1. Denote the conditions of �1 for
being decided left as condL1 and (respectively the condition for being decided right as
condR1).

Ân, ̂[Γ − A]n �cc Γ n [condL1]

Ân �1 1, ̂[Γ − A]n �1 Δ �cc Γ n
�1 Δ

�R, �L

Δ �cc Δ

1, Δ �cc Δ [condR1]

Ân �1 1, ̂[Γ − A]n �1 Δ �cc Γ n
�1 Δ

�R, �L

Hence, both cases of the decision on �1 are proved, in which the first case is reduced
to the hypothesis. �
The next two theorems establish a relationship between Γ and its split ups. We do this in
two steps because we only have that A, B ≡ A⊗B on the left of �. We thus firstly show

that Γ, Â⊥ � ̂∗Γ − A, which in a sense can be thought of as replacing G = (G−A)+A

with G + (−A) = (G − A). Here we note that because we are placing Γ̂ − A on the

right of �, we need to replace 1 by ⊥ (denoted ̂∗Γ − A). We then show that Â, Â⊥ �,
which can be thought of in a sense as A + (−A) = 0. These two results then together

give us a form of Γ � Γ̂ − A ⊗ Â as desired.

Theorem 5. Let Γ be a formula in the fragment MCA that contains A. Γ is split up

into Â and Γ̂ − A w.r.t A, where Â contains A and Γ̂ − A is the remainder. Let Â⊥
be the result of replacing the single copy of A in Â by A⊥. Let ̂∗Γ − A be defined as
Γ̂ − A except that where A is replaced by 1 in Γ̂ − A, it is replaced by ⊥ instead. Then

Γ, Â⊥ �cc
̂∗Γ − A.

Proof (sketch): by induction on the size of Γ . The proof can be obtained similarly from
the proof of theorem 4 and is omitted here for space reasons. �
It follows from the theorem that Γ, Â⊥, Â �cc

̂∗Γ − A⊗ Â. Combining this result with

theorem 4, we have Γ, Â⊥, Â �cc Γ̂ − A ⊗ Â �cc Γ .

Regarding Â and Â⊥, we further have the theorem.

Modeling Agents’ Choices in Temporal Linear Logic 155

Theorem 6. Let Γ be a formula in the fragment MCA, and A be a sub-formula of Γ . Let

Â be a split up of Γ that contains A and Â⊥ be the result of replacing the single copy

of A in Â by A⊥. If A and A⊥ are chosen in all the choices in Â and Â⊥ respectively,
then the following sequent is provable in TLL:

Â ⊗ Â⊥ �

Proof (sketch): the theorem can be proved by induction on the size of Â in a similar
manner as the proof of theorem 4 and is omitted here for space reason. �
As a result of theorem 6, the concurrent presence of both Â and its consumption Â⊥
does not produce anything in terms of resources and actions. Therefore, the resources

and actions (Γ, Â⊥, Â) required to produce ̂∗Γ − A ⊗ Â are essentially Γ . In other

words, Γ, Â, Â⊥ �cc
̂∗Γ − A ⊗ Â is essentially

Γ �cc
̂∗Γ − A ⊗ Â.

Theorems 4 and 5 lay an important foundation for splitting up resources and goals in
agent interaction. Particularly, if a goal Γ contains a formula A that the current interac-
tion can derive, then Γ can be split into Â and Γ̂ − A. If A is ever chosen in Γ , then the
goal Â becomes a goal of A which can be achieved immediately by the current interac-
tion. Similarly, if a resource Γ , which contains A, is available for use in an interaction
that only uses A than the resource Γ can be split into two resources Γ̂ − A and Â, of
which Â can be used right away if A is ever chosen in Γ .

Returning to our example, the above theorems can be applied so that Peter can turn
his goal into concurrent sub-goals CD Burner ⊗ �

2music ⊗ (�2C ⊕4 �
21) ⊗

(�21 ⊕4 �
2T), where the decision on ⊕4 now is the same as that of ⊕3 (recall that

in Peter’s original goal in this section, ⊕3 was the choice between Chinese and Thai
food). Therefore, agent Peter can achieve the two sub-goals CD Burner ⊗ �

2music
as above and sends the subgoal (�2C ⊕4 �

21) as a request to Ming and the subgoal
(�21 ⊕4 �

2T) as a request to Chaeng.

If Ming makes Chinese food, then �
2C [

⊕4
↪→� L] results. As the choice ⊕4 is decided

left, the other subgoal (�21⊕4 �
2T) becomes �

21, which is also readily achievable.

If Ming does not make Chinese food, there is a proof of �
21, where [

⊕4
↪→� R]. This

decision on the choice ⊕4 (choosing right) makes the subgoal (�21⊕4 �
2T) becomes

�
2T . Thus, if all the subgoals are successful, this mechanism ensures that only one

kind of food is made.
Hence, such splitting up of formulas allows Peter to concurrently and partially achieve

his goal via different threads of interaction.

7 Discussion and Conclusion

This paper addresses issues in agents’ decision making when it comes to agents’ choices
and indeterminate possibilities in a distributed environment. A modeling of internal
choices and indeterminate possibilities as well as their decisions is presented via choice

156 D.Q. Pham, J. Harland, and M. Winikoff

calculus. The modeling supports decisions across time, decisions based on predictions
of changes in the environment, as well as dependencies and distribution among choices
with respect to time.

Temporal linear logic has been used in our modeling due to its natural role in support-
ing agent planning in concurrent and resource-conscious agent systems. Its limitation that
the standard sequent calculus rules only provide a strategy of being safe by always taking
all future options into account is overcome. Indeed, our choice calculus provides agents
with various strategies at each decision making point when it comes to internal choices
and future possibilities. In particular, agents can make predictions of future events and/or
can make early decisions and act accordingly. The combinations of these strategies re-
flect how cautious the agents are when dealing with future changes, how agents strike
a balance between safety and resource efficiency, how agents match up their plans with
the future via predictions and how agents shape their future actions by early decisions.
Moreover, as these strategies add flexibility into agents’ decision making to deal with
choices and changes, this is a step forward in providing flexible agent interaction.

Furthermore, the ability to deal with dependencies among distributed choices opens
up another area for enhancing the quality of agents’ decision making. Indeed, consider-
ation of other or future choices or events can be specified as constraints to be satisfied on
current choices. Hence, decision making by agents on choices is not carried out locally
but with global and temporal awareness, and in a distributed manner.

Our second contribution is deriving a mechanism for agent reasoning to divide tasks
into multiple subtasks which can be attempted concurrently in a distributed manner. In
other words, rather than having human designers specify the distribution of concurrent
tasks for agents, we can have agents construct a distributed model of task resolution
by themselves. The mechanism is based on transferring inner dependencies into outer
dependencies among distributed formulas. This is well suited to the nature of systems
composed of multiple independent agents interacting with each other.

The mechanism also supports the notion of arbitrary partial achievement of goals
and partial utilization of resources. This removes the need to pre-specify subgoals for
various threads of interaction and lets agents work out the partial achievement of the
goals and what remain. Interaction then can take place at agents’ discretion, so long
as it is beneficial to agents’ goals. This further provides agents with an autonomy in
interacting in open systems.

Our further work includes extending the choice calculus to other temporal operators
like � and �. We will also explore variations of the splitting up of formulas which
directly encode various strategies of agents in dealing with choices. Furthermore, de-
riving an implementation platform using choice calculus and splitting up mechanisms
for such a modeling of flexible agent interaction using TLL as [2] is also considered.
Finally, there is scope for investigating the relationship between our approach for mod-
eling choices, and the use of Computational Tree Logic (CTL).

Acknowledgments

We would like to acknowledge the support of the Australian Research Council under
grant DP0663147 and also thank the reviewers for their helpful comments.

Modeling Agents’ Choices in Temporal Linear Logic 157

References

1. Munroe, S., Miller, T., Belecheanu, R.A., Pechoucek, M., McBurney, P., Luck, M.: Crossing
the agent technology chasm: Experiences and challenges in commercial applications of agents.
Knowledge Engineering Review 21(4) (2006)

2. Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent interactions.
In: AAMAS 2007. Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems, pp. 124–131 (May 2007)

3. Hirai, T.: Temporal Linear Logic and Its Applications. PhD thesis, Graduate School of Science
and Technology, Kobe University (2000)

4. Emerson, E.A.: Temporal and modal logic. Handbook of theoretical computer science (vol.
B): formal models and semantics, 995–1072 (1990)

5. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
6. Harland, J., Winikoff, M.: Agent negotiation as proof search in linear logic. In: AAMAS 2002.

Proceedings of the first international joint conference on Autonomous agents and Multi-Agent
Systems, pp. 938–939. ACM Press, New York (2002)

7. Küngas, P.: Linear logic, partial deduction and cooperative problem solving. In: Leite, J.A.,
Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 97–112.
Springer, Heidelberg (2004)

8. Küngas, P., Matskin, M.: Symbolic negotiation with linear logic. In: Dix, J., Leite, J.A. (eds.)
CLIMA IV. LNCS (LNAI), vol. 3259, pp. 71–88. Springer, Heidelberg (2004)

9. Pham, D.Q., Harland, J.: Flexible agent protocols via temporal and resource-based reasoning.
In: AAMAS 2006. Proceedings of the fifth international joint conference on Autonomous
agents and Multi-Agent Systems, pp. 235–237. ACM Press, New York (2006)

Conflict Resolution in Norm-Regulated

Environments Via Unification and Constraints

M.J. Kollingbaum1, W.W. Vasconcelos1,
A. Garćıa-Camino2, and T.J. Norman1

1 Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{mkolling, wvasconc, tnorman}@csd.abdn.ac.uk
2 IIIA-CSIC, Campus UAB 08193 Bellaterra, Spain

andres@iiia.csic.es

Abstract. We present a mechanism to detect and resolve conflicts in
virtual environments, populated by agents whose behaviours are regu-
lated by norms, that is, explicit representations of obligations, permis-
sions and prohibitions. A conflict arises when an action is simultane-
ously prohibited and obliged/permitted. We use first-order unification
and constraint satisfaction to detect and resolve such conflicts, introduc-
ing a concept of norm curtailment. We present an algorithm for norm
adoption which preserves conflict-freedom. Our approach allows us to ad-
dress indirect conflicts and conflicts arising from the delegation of actions
between agents.

1 Introduction

Norm-regulated virtual organisations (VOs) use obligations, permissions and
prohibitions to constrain and influence the behaviour of self-interested, het-
erogeneous software agents. Norms are important for VOs, as they allow a
generic albeit precise specification of social structures in terms of rights and
duties of agents. Norm-regulated VOs, however, may experience problems when
norms assigned to agents are in conflict – actions may be simultaneously for-
bidden and obliged/permitted. For example, a norm “agent X is permitted to
send bid(ag1, 20)” and “agent ag2 is forbidden to send bid(Y ,Z)” (where X ,Y
and Z are variables and ag1, ag2 and 20 are constants) show two norms that are
in conflict regarding action send bid.

In order to detect and resolve norm conflicts and to check norm-compliance
of actions, we propose a mechanism based on first-order unification [1] and con-
straint satisfaction [2]. We have generalised the work presented in [3] allowing
for arbitrary constraints to be added to norms, and the conflict resolution itself
has been reformulated as a manipulation of constraints associated with norms.

This paper is organised as follows. In the following section we introduce a
“lightweight” definition of virtual organisations and their enactments. In Sec-
tion 3 we define norms, constraints and global normative states. Section 4 de-
scribes in detail a mechanism for conflict detection and resolution. In Section 5,
we describe how agents check the norm-compliance of their actions with the use

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 158–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Conflict Resolution in Norm-Regulated Environments 159

of unification and constraint satisfaction. Section 6 describes indirect conflicts
occurring via domain-specific relationships between actions and via the delega-
tion of actions among roles. Section 7 describes the application of the conflict
resolution mechanism in a detailed example. Section 8 surveys related work and
Section 9 concludes this paper.

2 Virtual Organisations

Following [3], we base our discussion of norm conflicts on a simple representation
of a virtual organisation [4] as a finite-state machine where actions of individual
agents lead to state transitions. Figure 1 shows a graphical representation of one

���������	0

p(X)

��

q(Y ,Z)
���������	1

s(A,B)
���������	
��
����2

Fig. 1. Sample VO as a Finite-State Machine

such finite-state machine, whose edges between states are labelled with first-order
formulae representing actions to be performed by individual agents1. Although
there are more sophisticated and expressive ways to represent agent activity
and interaction (e.g., AUML [6] and electronic institutions [7], to name a few)
we shall assume any higher-level formalism can be mapped onto a finite-state
machine (possibly with some loss of expressiveness). A virtual organisation is
defined as follows:

Definition 1. A virtual organisation I is a tuple 〈S , s0,E ,T 〉, where S =
{s1, . . . , sn} is a finite and non-empty set of states, s0 ∈ S is the initial state,
E is a finite set of edges (s , s ′, ϕ) with s , s ′ ∈ S connecting s to s ′ and labelled
with a first-order atomic formula ϕ, and T ⊆ S is a set of final states.

Notice that edges are directed, so (s , t , ϕ) �= (t , s , ϕ). The sample VO of Fig-
ure 1 is formally represented as I = 〈{0, 1, 2}, 0, {(0, 0, p(X)), (0, 1, q(Y ,Z)), (1,
2, s(A,B)}, {2}〉. We assume an implicit existential quantification on any vari-
ables in ϕ, so that, for instance, s(A,B) stands for ∃A,B s(A,B).

Roles, as exploited in, for instance, [8] and [7], define a pattern of behaviour
to which any agent that adopts a particular role ought to conform. Moreover, all
agents with the same role are guaranteed the same rights, duties and opportuni-
ties. We shall make use of two finite, non-empty sets, Agents = {ag1, . . . , agn}
and Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers
and role labels.

The specification of a VO as a finite-state machine gives rise to a possibly
infinite set of histories of computational behaviours, in which the actions la-
belling the paths from the initial state to a final state are recorded. Although
1 We adopt Prolog’s convention [5] and use strings starting with a capital letter to

represent variables and strings starting with a small letter to represent constants.

160 M.J. Kollingbaum et al.

the actions comprising a VO are carried out in a distributed fashion, we propose
an explicit global account of all events. In practice, this can be achieved if we
require individual agents to declare/inform whatever actions they have carried
out; this assumes trustworthy agents, naturally2.

In order to record the authorship of actions, we annotate the formulae with
the agents’ unique identification. Our explicit global account of all events is a set
of ground atomic formulae ϕ̄, that is, we do not allow variables in formulae. Each
formula is a truthful record of an action specified in the VO. Notice, however, that
in the VO specification generality and flexibility are attained via the variables
that may appear in formulae: when an agent performs an actual action then any
variables of the specified action are assigned values. We thus define:

Definition 2. A global execution state of a VO, denoted as Ξ, is a finite, pos-
sibly empty, set of tuples 〈a : r , ϕ̄, t〉 where a ∈ Agents is an agent identifier,
r ∈ Roles is a role label, ϕ̄ is a ground first-order atomic formula, and t ∈ IN
is a time stamp.

For instance, 〈ag1:buyer, p(a, 34), 20〉 states that agent ag1 adopting role buyer
performed action p(a, 34) at instant 20. Given a VO I = 〈S , s0,E ,T 〉, an ex-
ecution state Ξ and a state s ∈ S , we can define a function which obtains a
possible next execution state, viz., h(I, Ξ, s) = Ξ ∪ {〈a:r , ϕ̄, t〉}, for one (s , s ′,
ϕ) ∈ E . Such a function h must address two kinds of non-determinism found
in VOs: non-determinism arising from more than one edge leaving a state, and
non-determinism arising from the possible values the variables of the formulae
labelling edges may get; additionally, there are the choices on the possible agents
that can carry out actions and their roles. We also define a function to compute
the set of all possible execution states, h∗(I, Ξ, s) = {Ξ ∪ {〈a :r , ϕ̄, t〉} | (s , s ′,
ϕ) ∈ E}.

The VO specification introduced previously must be augmented to accom-
modate the agent identification as well as its associated role. We thus have
edges specified as (s , s ′, 〈a, r , ϕ, t〉). More expressiveness can be achieved if we
allow constraints (as introduced below) to be added to edges, as in, for instance,
(s , s ′, 〈a, r , (p(X ,Y) ∧ X > Y), t〉), showing that p(X ,Y) causes the progress
of the VO, provided X > Y . Such VOs are as expressive as the logic-based
electronic institutions proposed in [10].

3 Norms

Norms are central to our discussion. We assume that agents adopt specific roles
and, with that, a set of norms that regulate their actions within a virtual organ-
isation. We extend our previous work [3], and introduce a more expressive norm
definition, accommodating constraints. We, again, adopt the notation of [8] for
specifying norms and complement it with constraints [2]. By using constraints,
2 Non-trustworthy agents can be accommodated in this proposal, if we assign to each

of them a governor agent which supervises the actions of the external agent and
reports on them. This approach was introduced in [9] and is explained in section 5.

Conflict Resolution in Norm-Regulated Environments 161

we can restrict the influence of norms on specific parameters of actions. Our
building blocks are first-order terms τ , that is, constants, variables and func-
tions (applied to terms). We shall make use of numbers and arithmetic functions
to build those terms. Arithmetic functions may appear infix, following their usual
conventions. Constraints are defined as follows:

Definition 3. Constraints, generically represented as γ, are any constructs of
the form τ � τ ′, where � ∈ {=, �=, >, ≥, <, ≤}.
The syntax of our norms are as follows:

Definition 4. A norm ω is a tuple 〈ν, td , ta , te〉, where ν is any construct of
the form Oτ1:τ2ϕ ∧

∧n
i=0 γi (an obligation), Pτ1:τ2ϕ ∧

∧n
i=0 γi (a permission) or

Fτ1:τ2ϕ∧
∧n

i=0 γi (a prohibition), where τ1, τ2 are terms, ϕ is a first-order atomic
formula and γi , 0 ≤ i ≤ n, are constraints. The parameters td , ta , te ∈ IN are,
respectively, the time when ν was declared (introduced), when ν becomes active
and when ν expires, td ≤ ta ≤ te .

Term τ1 identifies the agent(s) to whom the norm is applicable and τ2 is the
role of such agent(s). Oτ1:τ2ϕ ∧

∧n
i=0 γi thus represents an obligation on agent

τ1 taking up role τ2 to bring about ϕ, subject to constraints γi , 0 ≤ i ≤ n. The
γi ’s express constraints on those variables occurring in ϕ.

In the definition above, we only cater for conjunctions of constraints. If dis-
junctions are required then a norm must be established for each disjunct. For in-
stance, if we required the norm PA:Rmove(X)∧(X < 10∨X = 15) then we must
break it into two norms PA:Rmove(X) ∧ X < 10 and PA:Rmove(X) ∧ X = 15.
We assume an implicit universal quantification over variables in ν; for instance,
PA:Rp(X , b, c) stands for ∀A ∈ Agents. ∀R ∈ Roles. ∀X .PA:Rp(X , b, c). We
comment on the existential quantification in the final section of this paper.

We propose to formally represent the normative positions of all agents taking
part in a virtual society from a global perspective. By “normative position” we
mean the “social burden” associated with individuals [9], that is, their obliga-
tions, permissions and prohibitions:

Definition 5. A global normative state Ω is a finite and possibly empty set of
tuples ω = 〈ν, td , ta , te〉.

As a simplification, we assume a single global normative state Ω for a virtual
organisation. However, this can be further developed into a fully distributed
form, with each agent maintaining its own Ω, thus allowing the scaling up of our
mechanism.

Global normative states complement the execution states of VOs with infor-
mation on the normative positions of individual agents. We can relate them via
a function to obtain a norm-regulated next execution state of a VO, that is,
g(I, Ξ, s , Ω, t) = Ξ ′, t standing for the time of the update. For instance, we
might want all prohibited actions to be excluded from the next execution state,
that is, g(I, Ξ, s , Ω, t) = Ξ ∪ {〈a:r , ϕ̄, t〉}, (s , s ′, ϕ) ∈ E and 〈Fa:rϕ, td , ta , te〉 �∈
Ω, ta ≤ t ≤ te . We might equally wish that only permitted actions be chosen
for the next execution state. We do not legislate, or indeed recommend, any

162 M.J. Kollingbaum et al.

particular way to regulate VOs. We do, however, offer simple underpinnings to
allow arbitrary policies to be put in place. In the same way that a normative
state is useful to obtain the next execution state of a VO, we can use an execu-
tion state to update a normative state. For instance, we might want to remove
any obligation specific to an agent and role, which has been carried out by that
specific agent and role, that is, f (Ξ, Ω) = Ω −Obls, Obls = {〈Oa:rϕ, td , ta , te〉 ∈
Ω | 〈a : r , ϕ̄, t〉 ∈ Ξ}. The management (i.e., creation and updating) of global
normative states is an interesting area of research. A simple and useful approach
is reported in [11]: production rules generically depict how norms should be up-
dated to reflect what agents have done and which norms currently hold. In this
paper our focus is not proposing how Ωs should be managed, and assume some
mechanism which does it.

4 Norm Conflicts

A conflict between two norms occurs if a formula representing an action is simul-
taneously under the influence of a prohibition and an obligation/permission for
the same agent (or set of agents). In such situations, norm-compliant agents will
experience a “paralysis” as whatever they do (or do not do) violates a norm. A
norm influences who (what agent/set of agents in a specific role) is permitted,
prohibited or obliged to perform a specific action (or set of actions). We regard
norms as having a scope of influence: the agent/role to which the norm is asso-
ciated, the action referred to in the norm, its variables (and the constraints of
the norm) all define the scope of influence (or simply scope) a norm.

Figure 2 shows the scope of influence of a prohibition and a permission on
instantiations of the action shift(X ,Y ,Z),X ∈ {a, b},Y ∈ {r , s},Z ∈ {u, v},
in a block world scenario, representing that block X is shifted from the top of
block Y to the top of block Z . The prohibition FA:Rshift(X ,Y ,Z) ∧ X = a
prevents any agent A in any role R from shifting a specific block X = a from any
block Y to any block Z (we explain below why we use a constraint X = a and not
simply a constant a in the formula). The scope of this prohibition is the action’s
space of possibilities enclosed within the larger irregular polygon. The diagram
also shows the scope of a permission PA:Rshift(X ,Y ,Z) ∧ X = a ∧ Y = r
conflicting with the prohibition – it permits any agent A in any role R to shift a
specific block X = a from a specific block Y = r to any other block Z . The scope
of influence of the permission is shift’s space of possibilities enclosed within the
smaller grey irregular polygon, contained within the scope of the prohibition.
This is a typical situation of conflict – the scopes of influence of the norms
overlap.

We use first-order unification [5,1] to detect and resolve conflicts between
norms. Unification allows us i) to detect whether norms are in conflict and ii)
to detect the set of actions that are under the influence of a norm. Unification is
a fundamental problem in automated theorem proving [1] and many algorithms
have been proposed; recent work propose means to obtain unifiers efficiently.
Unification is based on the concept of substitution:

Conflict Resolution in Norm-Regulated Environments 163

shift (X, Y, Z)

shift (a, Y, Z)

shift (a, r, Z) shift (a, s, Z)

shift (a, r, u)

shift (a, r, v)

shift (a, s, u)

shift (a, s, v)

shift (X, r, Z) X ∈ {a, b}
Y ∈ {r, s}
Z ∈ {u, v}

Conflict

FA:R shift(X, Y, Z) ∧∧∧∧ X = a, 1,1,1000

PA:R shift(X, Y, Z) ∧∧∧∧ X = a ∧∧∧∧ Y = r, 1,1,1000

X/bY/r

Y/r Y/s X/a

Z/u Z/v Z/u Z/v

Fig. 2. Conflict between a Permission and a Prohibition

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [1] – a substitution
σ is a unifier of two terms τ1 and τ2, if τ1 ·σ = τ2 ·σ. Additionally, we describe how
substitutions are applied to obligations, permissions and prohibitions. Below, X
stands for either O, P or F:
1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x .
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. (Xτ1:τ2ϕ ∧

∧n
i=0 γi) · σ = (X(τ1·σ):(τ2·σ)ϕ · σ) ∧

∧n
i=0 γi · σ).

5. 〈ν, td , ta , te〉 · σ = 〈(ν · σ), td , ta , te〉

We shall use unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds for two terms τ1, τ2, iff τ1 ·σ = τ2 ·σ holds,
for some σ; unify(pn (τ0, . . . , τn), pn (τ ′0, . . . , τ

′
n), σ) holds, for two atomic for-

mulae pn(τ0, . . . , τn), pn (τ ′0, . . . , τ
′
n), iff unify(τi , τ ′i , σ), 0 ≤ i ≤ n, for some σ.

We assume that unify is based on a suitable implementation of a unification al-
gorithm that i) always terminates (possibly failing, if a unifier cannot be found),
ii) is correct and iii) is of linear computational complexity. The unify relation-
ship checks that substitution σ is a unifier, but can also be used to find σ.

4.1 Conflict Detection

With unification, we can detect whether norms are in conflict. We define formally
a conflict between norms as follows:

164 M.J. Kollingbaum et al.

Definition 8. A conflict arises between ω, ω′ ∈ Ω under a substitution σ, de-
noted as conflict(ω, ω′, σ), iff the following conditions hold:
1. ω = 〈(Fτ1:τ2ϕ ∧

∧n
i=0 γi), td , ta , te〉, ω′ = 〈(Oτ ′

1:τ ′
2
ϕ′ ∧

∧n
i=0 γ′i), t

′
d , t ′a , t ′e〉,

2. unify(〈τ1, τ2, ϕ〉, 〈τ ′1, τ ′2, ϕ′〉, σ), satisfy(
∧n

i=0 γi ∧ (
∧m

i=0 γ′i · σ))
3. overlap(ta , te , t ′a , t ′e).

That is, a conflict occurs if i) a substitution σ can be found that unifies the
variables of two norms3, and ii) the conjunction

∧n
i=0 γi ∧ (

∧m
i=0 γ′i) · σ) of con-

straints from both norms can be satisfied4 (taking σ under consideration), and
iii) the activation period of the norms overlap. The overlap relationship holds
if i) ta ≤ t ′a ≤ te ; or ii) t ′a ≤ ta ≤ t ′e .

For instance, we can unify the variables of norms PA:Rp(c,X) ∧ X > 50
and Fa:bp(Y ,Z) ∧ Z < 100 if we use substitution σ = {A/a,R/b,Y /c,X /Z}
Being able to find a substitution/unifier is a first indication that there may
be a conflict, expressed as an overlap of the norms’ influence on actions. The
unifier guarantees that the two norms conflict if the variables A,R,Y and X
obtain the values contained in the unifier. On the other hand, there will be
no conflict if different bindings are chosen. The constraints on the norms may
restrict this overlap and, therefore, leave actions under certain variable bindings
free of conflict. The constraints of both norms have to be investigated to see if
an overlap of the values indeed occurs. In our example, the permission has a
constraint X > 50 and the prohibition has Z < 100. By using the substitution
X /Z , we see that 50 < X < 100 and 50 < Z < 100 represent ranges of values
for variables X and Z where a conflict will occur.

For convenience (and without any loss of generality) we assume that our
norms are in a special format: any non-variable term τ occurring in ν is replaced
by a fresh variable X (not occurring anywhere in ν) and a constraint X =
τ is added to ν. This transformation can be easily automated by scanning ν
from left to right, collecting all non-variable terms {τ1, . . . , τn}; then we add
∧n

i=1Xi = τi to ν. For example, norm PA:Rp(c,X) ∧ X > 50 is transformed into
PA:Rp(C ,X) ∧ X > 50 ∧ C = c.

4.2 Conflict Resolution

In order to resolve a norm conflict, law enforcers have to decide which of the
two conflicting norms should be ignored in favour of the other. For a software
agent, a mechanism should resolve the conflict – the set of norms Ω has to be
transformed into a set Ω′ that does not contain any conflicting norms so that the
agent can proceed with its execution. In [3], we defined the curtailment of norms
– one of the norms is manipulated so that its scope of influence is retracted from
3 A similar definition is required to address the case of conflict between a prohibi-

tion and a permission – the first condition should be changed to ω′ = 〈(Pτ ′
1:τ ′

2
ϕ′ ∧

∧n
i=0 γ′

i), t ′
d , t ′

a , t ′
e〉. The rest of the definition remains the same.

4 We assume an implementation of the satisfy relationship based on “off the shelf”
constraint satisfaction libraries such as those provided by SICStus Prolog [12,13,14];
it holds if the conjunction of constraints is satisfiable.

Conflict Resolution in Norm-Regulated Environments 165

specific instantiations of actions. By curtailing the scope of influence of a norm,
its overlap with another norm is eliminated.

Extending [3], we achieve curtailment by manipulating the constraints of the
norms. In Figure 3, we show how a curtailment of the prohibition changes its

Fig. 3. Conflict Resolution via Curtailment

scope of influence and thus eliminates the overlap between the two norms. Spe-
cific constraints are added to the prohibition thus curtailing it – these constraints
are derived from the other conflicting norm, that is, the permission. The scope
of the permission is determined by the constraints X = a and Y = r , restricting
the set of bindings for variables X and Y to values a and r . Adding a constraint
Y �= r to the prohibition curtails its scope of influence thus eliminating the
overlap with the scope of influence of the permission.

We now formally define how the curtailment of norms takes place. It is im-
portant to notice that the curtailment of a norm creates a new (possibly empty)
set of curtailed norms:

Definition 9. Relationship curtail(ω, ω′, Ω), where ω = 〈Xτ1:τ2ϕ ∧
∧n

i=0 γi ,
td , ta , te〉 and ω′ = 〈X′τ ′

1:τ
′
2
ϕ′ ∧

∧m
j=0 γ′j , t

′
d , t ′a , t ′e〉 (X and X′ being either O, F or

P) holds iff Ω is a possibly empty and finite set of norms obtained by curtailing
ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}, that is, the set of curtail-
ments of a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0 , . . . , ωc

m}, where ωc
j = 〈Xτ1:τ2ϕ ∧∧n

i=0 γi ∧ (¬γ′j · σ), td , ta , te〉, 0 ≤ j ≤ m.

166 M.J. Kollingbaum et al.

The rationale for the definition above is as follows. In order to curtail ω thus
avoiding any overlapping of values its variables may have with those variables of
ω′, we must “merge” the negated constraints of ω′ with those of ω. Additionally,
in order to ensure the appropriate correspondence of variables between ω and ω′

is captured, we must apply the substitution σ obtained via conflict(ω, ω′, σ) on
the merged negated constraints. By combining the constraints of ν = Xτ1:τ2ϕ ∧∧n

i=0 γi and ν′ = X′τ ′
1:τ

′
2
ϕ′∧

∧m
j=0 γ′j , we obtain the curtailed norm νc = Xτ1:τ2ϕ∧

∧n
i=0 γi ∧ ¬(

∧m
j=0 γ′j · σ). The following equivalences hold:

Xτ1:τ2ϕ ∧
n∧

i=0

γi ∧ ¬(
m∧

j=0

γ′j · σ) ≡ Xτ1:τ2ϕ ∧
n∧

i=0

γi ∧ (
m∨

j=0

¬γ′j · σ)

That is,
∨m

j=0(Xτ1:τ2ϕ ∧
∧n

i=0 γi ∧ ¬(γ′j · σ)). This shows that each constraint of
ν′ leads to a possible resolution of the conflict and a possible curtailment of ν.
The curtailment thus produces a set of curtailed norms νc

j = Xτ1:τ2p(t1, . . . , tn)∧∧n
i=0 γi ∧ ¬γ′j · σ, 0 ≤ j ≤ m. Although each of the νc

j , 0 ≤ j ≤ m, represents a
resolution of the norm conflict, we advocate that all of them should be added
to Ω in order to replace the curtailed norm. This would allow a preservation of
as much of the original scope of the curtailed norm as possible.

During the conflict resolution the mechanism has to choose which norm to
curtail. We introduce curtailment policies that determine, given a pair of norms,
which norm to curtail. We define curtailment policies as follows:

Definition 10. A policy π is a tuple 〈ω, ω′, (
∧n

i=0 γi)〉 establishing that ω should
be curtailed (and ω′ should be preserved), if (

∧n
i=0 γi) hold.

For example, a policy 〈〈FA:Rp(X ,Y),Td ,Ta ,Te〉, 〈PA:Rp(X ,Y),T ′d ,T ′a ,T ′e〉,
(Td < T ′d)〉 represents that a prohibition FA:Rp(X ,Y) has to be curtailed,
if the additional constraint, ensuring that the prohibition’s time of declaration
Td precedes that of the permission’s T ′d , holds. Adding constraints to policies
allows us a fine-grained control of conflict resolution, capturing classic forms of
resolving deontic conflicts – the constraint in the example establishes a prece-
dence relationship between the two norms that is known as legis posterioris (see
section 8 for more details). We shall represent a set of such policies as Π .

The algorithm shown in figure 4 describes how an originally conflict-free (pos-
sibly empty) set Ω can be extended in a fashion that resolves any emerging con-
flicts during norm adoption. With that, a conflict-free Ω is always transformed
into a conflict-free Ω′ that may contain curtailments. The algorithm makes use of
a set Π of policies determining how the curtailment of conflicting norms should
be achieved.

When a norm is curtailed, a set of new norms replaces the original norm.
This set of norms is collected into Ω′′ by curtail(ω, ω′, Ω′′). A curtailment takes
place if there is a conflict between ω and ω′. The conflict test creates a unifier
σ re-used in the policy test. When checking for a policy that is applicable, the
algorithm uses unification to check (a) whether ω matches/unifies with ωπ and
ω′ with ω′π; and (b) whether the policy constraints hold under the given σ. If a

Conflict Resolution in Norm-Regulated Environments 167

algorithm adoptNorm(ω, Ω, Π, Ω′)
input ω, Ω, Π
output Ω′

begin
Ω′ := ∅
if Ω = ∅ then Ω′ := Ω ∪ {ω}
else

for each ω′ ∈ Ω do
if conflict(ω, ω′, σ) then // test for conflict

if 〈ωπ, ω′
π, (

∧n
i=0 γi)〉 ∈ Π and // test policy

unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and satisfy(

∧n
i=0(γi · σ))

then
curtail(ω, ω′, Ω′′)
Ω′ := Ω ∪Ω′′

else
if 〈ω′

π, ωπ, (
∧n

i=0 γi)〉 ∈ Π and // test policy
unify(ω, ωπ, σ) and unify(ω′, ω′

π, σ) and satisfy(
∧n

i=0(γi · σ))
then

curtail(ω′, ω, Ω′′)
Ω′ := (Ω − {ω′}) ∪ ({ω} ∪Ω′′)

endfor
end

Fig. 4. Norm Adoption Algorithm

previously agreed policy in Π determines that the newly adopted norm ω is to
be curtailed in case of a conflict with an existing ω′ ∈ Ω, then the new set Ω′

is created by adding Ω′′ (the curtailed norms) to Ω. If the policy determines a
curtailment of an existing ω′ ∈ Ω when a conflict arises with the new norm ω,
then a new set Ω′ is formed by a) removing ω′ from Ω and b) adding ω and the
set Ω′′ to Ω.

5 Norm-Aware Agent Societies

With a conflict-free set of norms Ω, agents can test whether their actions are
norm-compliant. In order to check actions for norm-compliance, we use unifi-
cation, again. If an action unifies with a norm, then it is within its scope of
influence:

Definition 11. 〈a : r , ϕ̄, t〉, is within the scope of influence of 〈Xτ1:τ2ϕ∧
∧n

i=0 γi ,
td , ta , te〉 (where X is either O, P or F) iff the following conditions hold:
1. unify(〈a, r , ϕ̄〉, 〈τ1, τ2, ϕ

′〉, σ) and satisfy(
∧n

i=0 γi · σ)
2. ta ≤ t ≤ te

This definition naturally defines a predicate check/2, which holds if its first
argument, a candidate action (in the format of the elements of Ξ of Def. 2), is
within the influence of an prohibition ω, its second parameter. Figure 5 shows
the definition of this relationship as a logic program. Similarly to the check of
conflicts between norms, it tests i) if the agent performing the action and its role
unify with the appropriate terms τ1, τ2 of ω; ii) if the actions ϕ̄, ϕ themselves
unify; and iii) the conjunction of the constraints of both norms can be satisfied,
all under the same unifier σ. Lastly, it checks if the time of the action is within
the norm temporal influence.

168 M.J. Kollingbaum et al.

check(Action, ω) ←
Action = 〈a :r , ϕ̄, t〉∧
ω = 〈(Fτ1:τ2ϕ′ ∧

∧n
i=0 γi), td , ta , te〉∧

unify(〈a, r , ϕ̄〉, 〈τ1, τ2, ϕ
′〉, σ) ∧ satisfy(

∧n
i=0 γi · σ)∧

ta ≤ t ≤ te

Fig. 5. Check if Action is within Influence of a Prohibition

6 Indirect Conflicts

In our previous discussion, norm conflicts were detected via a direct comparison
of atomic formulae representing actions. However, conflicts and inconsistencies
may also arise indirectly via relationships among actions. For instance, if we
consider an with norms PA:Rp(X) and FA:Rq(X ,X) and if we assume that
p(X) amounts q(X ,X), then we can rewrite the permission as PA:Rq(X ,X)
and identify an indirect conflict between these agent’s norms. We use a set of
domain axioms in order to declare such domain-specific relationships between
actions:

Definition 12. A set of domain axioms, denoted as Δ, is a finite and possibly
empty set of formulae ϕ → (ϕ′1 ∧ · · · ∧ ϕ′n) where ϕ, ϕ′i , 1 ≤ i ≤ n, are atomic
first-order formulae.

In order to accommodate indirect conflicts between norms based on domain-
specific relationships of actions, we have to adapt our curtailment mechanism. A
curtailment occurs if there is a conflict, that is, if for two norms ω and ω′, their
variables unify, the conjunction of their constraints can be satisfied and their ac-
tivation periods overlap. With the introduction of domain axioms, this test has to
be performed for each of the conjuncts in the relationship. For example, if we have
a set of domain axioms Δ = {(p(X) → q(X ,X) ∧ r(X ,Y))} and a permission
〈PA:Rp(X), td , ta , te〉 then q(X ,X) and r(X ,Y) are also permitted. There is thus
an indirect conflict between 〈PA:Rp(X), td , ta , te〉 and 〈FA:Rq(X ,X), td , ta , te〉
and 〈FA:Rr(X ,Y), td , ta , te〉.

Domain axioms may also accommodate the delegation of actions between
agents. Such a delegation transfers norms across the agent community, possibly
creating conflicts. We introduce a special logical operator ϕ

τ1:τ2 τ′
1:τ

′
2−−−−−−→(ϕ′1∧· · ·∧ϕ′n)

to represent that agent τ1 adopting role τ2 can transfer any norms on action
ϕ to agent τ ′1 adopting role τ ′2, which should carry out actions ϕ′1 ∧ · · · ∧ ϕ′n
instead.

7 Example: Agents for the Grid

We address a scenario taken from the e-Science/Grid domain in which a ser-
vice provider may request payment that introduces a financial obligation for
users, but, at the same time commits them to the provision of the service that
represents a right for the user to access the service.

Conflict Resolution in Norm-Regulated Environments 169

In this scenario, a Principal Investigator (PI) of a research project has to
perform a specific research task that involves the analysis of data. We assume

8>>><
>>>:

〈Frsa:piclaim(X), 1, 1, 1000〉
〈Prsa:piclaim(staff costs), 1, 1, 1000〉
〈Prsa:piclaim(travel), 1, 1, 1000〉
〈Orsa:pireport experiment(rsa, D), 1, 1, 1000〉
〈FX :Y publish(D), 1, 1, 1000〉

9>>>=
>>>;

Fig. 6. Contract C

that a contract exists between the
PI and the funding body that intro-
duces certain permissions, prohibi-
tions and obligations for the con-
tracting partners. We regard both
the PI and the funding body as be-
ing represented as agents operating
on the Grid and assume that this contract is available in an electronic form and
followed by the agents in their actions.

A possible initial contract C is shown in Fig. 6. The first three norms represent
financial requirements of the agent taking on the principal investigator role.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

〈FA:R claim(X) ∧
„

A = rsa∧
R = pi

«
, 1, 1, 1000〉

〈PA:R claim(X) ∧
„

A = rsa ∧ R = pi∧
X = staff costs

«
, 1, 1, 1000〉

〈PA:R claim(X) ∧
0
@ A = rsa∧

R = pi∧
X = travel

1
A , 1, 1, 1000〉

〈OA:R report experiment(A, D) ∧
„

A = rsa∧
R = pi∧

«
, 1, 1, 1000〉

〈FX :Y publish(D), 1, 1, 1000〉

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Fig. 7. Alternative Format of Contract C

All claims are prohib-
ited (norm 1) with the
exception of a number
of specific types of item:
staff costs (norm 2) and
travel costs (norm 3)
are itemised here. In ad-
dition, an obligation is
stated that requires the
PI to report about the
experiment as well as a
prohibition for anybody to publish data. The last norm is a basic prohibition,
prohibiting any agent in any role from publishing data. Contract C in its al-
ternative (equivalent) format in which constants are replaced by variables and
constraints is shown in Fig. 7.

7.1 Conflict Resolution

Contract C has conflicting norms. We use our mechanism to obtain a conflict-
free version C ′ of it, in which only the first prohibition is curtailed. C ′ is shown

8>>>>>>>>><
>>>>>>>>>:

〈FA:R claim(X) ∧
0
@ A = rsa ∧ R = pi∧

X �= staff costs∧
X �= travel

1
A , 1, 1, 1000〉

〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
...
〈FX :Y publish(D), 1, 1, 1000〉

9>>>>>>>>>=
>>>>>>>>>;

Fig. 8. Contract C ′ with Curtailed Norm

in Fig. 8. In our example, two
Grid services are made avail-
able by two potential subcon-
tractors for the execution of
the data analysis task. These
are: i) a public non-profit or-
ganisation provides a free ser-
vice, but requires the disclo-
sure of data in a public reposi-
tory; and ii) a private commer-
cial organisation provides the service without the need for disclosure, but re-
quests a payment. These conditions of use can be expressed as norms in our for-
malism. The terms of the service, provided by the public non-profit organisation,

170 M.J. Kollingbaum et al.

are N1 = {〈OA:R publish(D ′), 1, 1, 1000〉}, that is, according to the terms of
conditions of the public service, the input data have to be published. The
terms of the service of the private commercial organisation, on the other hand,
are 〈OA:R pay(fee), 1, 1, 1000〉 or, alternatively, N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} That is, whoever uses the service is obliged to pay a fee. The
Research Assistant Agent (rsa) has to choose which service to use. Each of them
introduces a new obligation with associated conflicts, explained below.

If the public Grid service is chosen, then the set N1, containing a new obliga-
tion, is introduced. The set C ′ ∪ N1 contains a conflict: the obligation to publish

8>>>>><
>>>>>:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉
〈FX :Y publish(D) ∧ D �= D ′, 1, 1, 1000〉
〈OA:R publish(D ′), 1, 1, 1000〉

9>>>>>=
>>>>>;

Fig. 9. Contract C ′′ = C ′ ∪ N1

overlaps with the prohibition to
publish. Our mechanism handles
this, completely curtailing the pro-
hibition and giving rise to a new set
C ′′, shown in Fig. 9. The constraint
D �= D ′ ensures that variable D
cannot be bound to anything (since
D ′ is a free variable) – the prohi-
bition, therefore, becomes completely curtailed and has no further effect and,
hence, it is as if it had been removed.

A conflict within the set C ′ ∪ N2 is not immediately obvious. Intuitively, in
terms of paying expenses for research (the domain of discussion here), the action
pay is related to the action claim. Our mechanism copes with such indirect
conflicts as explained below.

7.2 Indirect Conflict Resolution

In choosing the private service, the obligation N2 = {〈OA:R pay(X) ∧ X =
fee, 1, 1, 1000〉} is introduced and a contract C ′′ = C ′ ∪ N2 created. Intu-
itively, we know that this introduces an indirect conflict, as the original contract

8>>>>><
>>>>>:

〈FA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈PA:R claim(X) ∧ . . . , 1, 1, 1000〉
〈OA:R report experiment(A, D) . . . , 1, 1, 1000〉
〈FX :Y publish(D) ∧ D �= D ′, 1, 1, 1000〉
〈OA:R claim(X) ∧ X = fee, 1, 1, 1000〉

9>>>>>=
>>>>>;

Fig. 10. Contract C ′′ = C ′ ∪ N Δ
2

does not allow such a claim. With
a domain axiom, we can express
that to pay for something eventu-
ally amounts to claiming it: Δ =
{pay(X)A:R A:R−−−−→claim(X)}. In con-
tract C ′′, we have permissions that
allow staff to claim costs and travel,
but not fees. According to the given
domain axiom, obligation N2 can be transformed into N Δ

2 = OA:R claim(X) ∧
X = fee, 1, 1, 1000〉}. By forming a new contract C ′′ = C ′∪N Δ

2 , a direct conflict
between the first prohibition regarding claims and obligation N Δ

2 arises (Fig. 10).
The conflict resolution can now take place as shown in the case of direct conflicts
(see contract C ′ in Fig. 8).

7.3 Solving Conflicts Arising from Delegation

Conflicts can also arise from delegation among agents/roles. Let there be the
set of domain axioms Δ of Fig. 11: it contains axioms describing how the

Conflict Resolution in Norm-Regulated Environments 171

Research Assistant Agent can fulfil its obligation to report the result of an
experiment. As the domain axioms show, there is a relationship between the
action report experiment and do exp. An additional axiom tells us that the
action do exp leads to the sending of experimental data to one of the cho-
sen Grid services of subcontractors. The domain axiom send(A,R′,E ,D)A:R A′:R′−−−−−→

8>>>>>>>>>><
>>>>>>>>>>:

pay(X)
A:R A:R−−−−−→claim(X)

report experiment(A, E, D)
A:R A:R−−−−−→do exp(A, E, D)

do exp(A, e1, D)
A:pi A:pi−−−−−→send(A, exp, e1, D)

send(A, R′, E, D)
A:R A′:R′
−−−−−−→receive(A′, R′, A, E, D)

receive(A′, R′, A, E, D)
A′:R′ A′:R′
−−−−−−−−→

„
analyse(A′, E, D, S)∧

send(A, A′, S)

«

9>>>>>>>>>>=
>>>>>>>>>>;

Fig. 11. Set of Domain Axioms Δ

receive(A′,R′,A,E ,D) shows
the delegation of activities from
the agent responsible for the data
analysis to a subcontractor for ac-
tually performing the experiment.
The remaining domain axioms de-
scribe how a subcontractor per-
forms an experiment and sends
back results upon receiving such a
request. For example, the obligation to report experimental results gives rise to
an obligation to perform the action do exp and, continuing in this transitive
fashion, obligations for all the related actions as described before. Due to the
delegation step, obligations also arise for the partner agents. These obligations
on their turn may interfere with prohibitions held by the collaborating agents
and should be dealt with in the same way.

8 Related Work

The work presented in this paper is an extension of the work presented in
[3,15,16]. It is also a logic-theoretic investigation into ways to represent norma-
tive modalities along with their paradoxes [17,18]. In [3], we introduced conflict
detection and resolution based on unification. In this paper, we re-visited that
research and introduced constraints to the conflict detection/resolution mecha-
nism. The result is a generic mechanism for conflict detection/resolution.

Efforts to keep law systems conflict-free can be traced back to the jurispru-
dential practice in human society. Inconsistency in law is an important issue
and legal theorists use a diverse set of terms such as, for example, normative
inconsistencies/conflicts, antinomies, discordance, etc., in order to describe this
phenomenon. There are three classic strategies for resolving deontic conflicts
by establishing a precedence relationship between norms: legis posterioris – the
most recent norm takes precedence, legis superioris – the norm imposed by the
strongest power takes precedence, and legis specialis – the most specific norm
takes precedence [19]. The work presented in [15] discusses a set of conflict sce-
narios and conflict resolution strategies, among them the classic strategies men-
tioned above. For example, one of these conflict resolution strategies achieves a
resolution of a conflict via negotiation with a norm issuer. In [20], an analysis
of different normative conflicts is provided. The authors suggest that a deontic
inconsistency arises when an action is simultaneously permitted and prohibited.
In [21], three forms of conflict/inconsistency are described as total-total, total-
partial and intersection. These are special cases of the intersection of norms

172 M.J. Kollingbaum et al.

as described in figure 2 and in [15] – a permission entailing the prohibition, a
prohibition entailing the permission or an overlap of both norms.

The SCIFF framework [22] is related to our work in that it also uses con-
straint satisfaction to reduce the scope of expectations to avoid conflict – ex-
pectation is a concept closely related to norms [23]. For instance, in that work,
E(p,X), 0 ≤ X ≤ 10 means that p is expected to hold true between 0 and
10, and EN(p,Y),Y > 5 means that p is expected not to hold true when
Y is greater than 5; positive expectations are related to obligations (and are
implicitly existentially quantified) and negative expectations are related to pro-
hibitions (and are implicitly universally quantified). The SCIFF proof procedure
uses constraint resolution to reduce the domain of the expectations (and non-
expectations). However, SCIFF always gives higher priority to negative expec-
tations over positive ones.

9 Conclusions, Discussion and Future Work

We have presented a novel mechanism to detect and resolve conflicts in norm-
regulated environment. Such conflicts arise when an action is simultaneously
obliged and prohibited or, alternatively, when an action is permitted and pro-
hibited. We introduce norms as first-order atomic formulae whose variables can
have arbitrary constraints – this allows for more expressive norms, with a finer
granularity and greater precision. The proposed mechanism is based on first-
order unification and constraint satisfaction algorithms, extending our previous
work [3], addressing a more expressive class of norms.

Our conflict resolution mechanism amounts to manipulating the constraints of
norms to avoid overlapping values of variables – this is called the “curtailment”
of variables/norms. We have also introduced a robust and flexible algorithm
to manage the adoption of possibly conflicting norms, whereby explicit policies
depict how the curtailment should take place. Our proposed formalism enables
the detection of indirect normative conflicts, arising when an action is broken
down into composite actions appearing in conflicting norms.

In this paper we only considered universally quantified norms, leaving out
important cases of existential quantifications. If existential quantification is al-
lowed, then disjunction of constraints must be preserved. In this case, replacing
a norm that has a disjunction of constraints with a conjunction of separate
norms does not work any more. If we allow existential quantification then we
must preserve disjunctions of constraints and the set of norms Ω should be man-
aged differently, in particular, disjunctions of norms should be allowed. We are
currently working to address these issues.

The policies establishing which of two conflicting norms should be curtailed
confers generality on our approach, being neatly accommodated in our algorithm.
We observe, however, that it would also be possible to make policies part of the
virtual organisation (VO) specification, giving higher priority to those norms
that allow the progress of the organisation. For instance, if p(X) is forbidden
and p(Y) is permitted (both for the same group of agents/roles), that is, there
is a complete overlap on the norms’ scope of influence, then a policy on the VO

Conflict Resolution in Norm-Regulated Environments 173

could specify which of the two should be “removed” (by adding the constraint
X �= Y onto it), based on which of them would allow the VO to progress. For
example, if the VO progresses when an agent performs p(a), then the prohibition
could be lifted.

We want to extend our work to also address the removal of norms: when a
norm is removed, any curtailments it may have caused must be undone. We en-
visage a roll-back/roll-forward mechanism, whereby a history of normative states
allows us to retrieve the state prior to the introduction of the norm to be removed
(roll-back) and apply to this state all the updates which took place after the norm
was introduced, skipping the actual norm to be removed (roll-forward). Addi-
tionally, we want to integrate our mechanisms with norm-updating approaches
such as [11] and to investigate if it is possible (and in which circumstances) to
detect conflicts at the design stage of norm updates (as opposed to run-time).

Acknowledgements. This research is continuing through participation in the
International Technology Alliance sponsored by the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defence (http://www.usukita.org).

References

1. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New
York (1990)

2. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of Logic
Progr. 19/20, 503–581 (1994)

3. Vasconcelos, W., Kollingbaum, M., Norman, T., Garćıa-Camino, A.: Resolving
Conflict and Inconsistency in Norm-Regulated Virtual Organizations. In: AAMAS.
Procs. 6th Int’l Joint Conf. on Autnomous Agents and Multi-Agent Systems, Hon-
oloulu, Hawai’i (2007)

4. O’Leary, D.E., Kuokka, D., Plant, R.: Artificial Intelligence and Virtual Organiza-
tions. Commun. ACM 40(1) (1997)

5. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K (1997)
6. Parunak, H.V.D., Odell, J.: Representing Social Structures in UML. In: Procs 5th

Int’l Conf. on Autonomous Agents, pp. 100–101. ACM Press, New York (2001)
7. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-

tronic Institutions. PhD thesis, IIIA-CSIC, Spain (2001)
8. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of

Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2), 145–184 (2003)

9. Garcia-Camino, A., Rodriguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.W.: A
Distributed Architecture for Norm-Aware Agent Societies. In: Baldoni, M., Endriss,
U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, Springer,
Heidelberg (2006)

10. Vasconcelos, W.W.: Expressive Global Protocols via Logic-Based Electronic Insti-
tutions. In: AAMAS 2003. Proc. 2nd Int’l Joint Conf. on Autonomous Agents &
Multi-Agent Systems, ACM Press, New York (2003)

11. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions. ACM
SIGecom Exchanges 5(5), 33–40 (2006)

174 M.J. Kollingbaum et al.

12. Swedish Institute of Computer Science: SICStus Prolog (2005),
http://www.sics.se/isl/sicstuswww/site/index.html

13. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. Journal of Logic Programming 37(1-3), 1–46 (1998)

14. Holzbaur, C.: ÖFAI clp(q,r) Manual, Edition 1.3.3. TR-95-09, Austrian Research
Institute for A. I., Vienna, Austria (1995)

15. Kollingbaum, M., Norman, T., Preece, A., Sleeman, D.: Norm Refinement: Inform-
ing the Re-negotiation of Contracts. In: COIN@ECAI 2006. Workshop on Coordi-
nation, Organization, Institutions and Norms in Agent Systems, Riva del Garda,
Italy (2006)

16. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: An Algorithm for Con-
flict Resolution in Regulated Compound Activities. In: O’Hare, G.M.P., Ricci, A.,
O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS, vol. 4457, pp. 193–208.
Springer, Heidelberg (2006)

17. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7,
69–79 (1999)

18. Sergot, M.: A Computational Theory of Normative Positions. ACM Transactions
on Computational Logic 2(4), 581–622 (2001)

19. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-Dimensional Dynamic Knowledge
Representation. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001.
LNCS (LNAI), vol. 2173, Springer, Heidelberg (2001)

20. Elhag, A., Breuker, J., Brouwer, P.: On the Formal Analysis of Normative Conflicts.
Information & Comms. Techn. Law 9(3), 207–217 (2000)

21. Ross, A.: On Law and Justice. Stevens & Sons (1958)
22. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF Ab-

ductive Proof Procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS
(LNAI), vol. 3673, Springer, Heidelberg (2005)

23. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping
Deontic Operators to Abductive Expectations. Computational & Mathematical
Organization 12(2-3), 205–225 (2006)

http://www.sics. se/isl/sicstuswww/site/index.html

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 175–192, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Complexity Monotonicity Thesis for
Environment, Behaviour and Cognition

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV, The Netherlands
{tbosse, sharp, treur}@cs.vu.nl

http://www.cs.vu.nl/~{tbosse, sharp, treur}

Abstract. Development of more complex cognitive systems during evolution is
sometimes viewed in relation to environmental complexity. In more detail,
growth of complexity during evolution can be considered for the dynamics of
externally observable behaviour of agents, for their internal cognitive systems,
and for the environment. This paper explores temporal complexity for these
three aspects, and their mutual dependencies. A number of example scenarios
have been formalised in a declarative temporal language, and the complexity of
the structure of the different formalisations was measured. Thus, some
empirical evidence was provided for the thesis that for more complex
environments, more complex behaviour and more complex mental capabilities
are needed.

1 Introduction

Behaviour of agents (both living organisms and artificial (software or hardware)
agents) can occur in different types and complexities, varying from very simple
behaviour to more sophisticated forms. Depending on the complexity of the externally
observable behaviour, the internal mental representations and capabilities required to
generate the behaviour also show a large variety in complexity. From an evolutionary
viewpoint, for example, Wilson [16], p. 187 and Darwin [3], p. 163 point out how the
development of behaviour relates to the development of more complex cognitive
capabilities. Godfrey-Smith [4], p. 3 assumes a relationship between the complexity
of the environment and the development of mental representations and capabilities.
He formulates the main theme of his book in condensed form as follows: ‘The
function of cognition is to enable the agent to deal with environmental complexity’
(the Environmental Complexity Thesis). In this paper, this thesis is refined as follows:

• the more complex the environment, the more sophisticated is the behaviour
required to deal with this environment,

• the more sophisticated the behaviour, the more complex are the mental
representations and capabilities needed

This refined thesis will be called the Complexity Monotonicity Thesis. The idea is
that to deal with the physical environment, the evolution process has generated and

176 T. Bosse, A. Sharpanskykh, and J. Treur

still generates a variety of organisms that show new forms of behaviour. These new
forms of behaviour are the result of new architectures of organisms, including
cognitive systems with mental representations and capabilities of various degrees of
complexity. The occurrence of such more complex architectures for organisms and
the induced more complex behaviour itself increases the complexity of the
environment during the evolution process. New organisms that have to deal with the
behaviour of such already occurring organisms live in a more complex environment,
and therefore need more complex behaviour to deal with this environment, (to be)
realised by an architecture with again more complex mental capabilities. In particular,
more complex environments often ask for taking into account more complex histories,
which requires more complex internal cognitive representations and dynamics, by
which more complex behaviour is generated.

This perspective generates a number of questions. First, how can the Complexity
Monotonicity Thesis be formalised, and in particular how can the ‘more complex’
relation be formalised for (1) the environment, (2) externally observable agent
behaviour and (3) internal cognitive dynamics? Second, connecting the three items,
how to formalise (a) when does a behaviour fit an environment: which types of
externally observable behaviours are sufficient to cope with which types of
environments, and (b) when does a cognitive system generate a certain behaviour:
which types of internal cognitive dynamics are sufficient to generate which types of
externally observable agent behaviour?

In this paper these questions are addressed from a dynamics perspective, and
formalised by a declarative temporal logical approach. Four cases of an environment,
suitable behaviour and realising cognitive system are described, with an increasing
complexity over the cases. Next, for each case, complexity of the dynamics of
environment, externally observable agent behaviour and internal cognitive system are
formalised in terms of structure of the formalised temporal specifications describing
them, thus answering (1) to (3). Moreover, (a) and (b) are addressed by establishing
formalised logical (entailment) relations between the respective temporal
specifications. By comparing the four cases with respect to complexity, the
Complexity Monotonicity Thesis is tested.

2 Evolutionary Perspective

The environment imposes certain requirements that an agent’s behaviour needs to
satisfy; these requirements change due to changing environmental circumstances. The
general pattern is as follows. Suppose a certain goal G for an agent (e.g., sufficient
food uptake over time) is reached under certain environmental conditions ES1
(Environmental Specification 1), due to its Behavioural Specification BS1, realised by
its internal (architecture) CS1 (Cognitive Specification 1). In other words, the
behavioural properties BS1 are sufficient to guarantee G under environmental
conditions ES1, formally ES1 & BS1 ⇒ G, and the internal dynamics CS1 are sufficient
to guarantee BS1, formally CS1 ⇒ BS1. In other environmental circumstances,
described by environmental specification ES2 (for example, more complex) the old
circumstances ES1 may no longer hold, so that the goal G may no longer be reached
by behavioural properties BS1. An environmental change from ES1 to ES2 may entail

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 177

that behaviour BS1 becomes insufficient. It has to be replaced by new behavioural
properties BS2 (also more complex) which express how under environment ES2 goal
G can be achieved, i.e., ES2 & BS2 ⇒ G.

Thus, a population is challenged to realise such behaviour BS2 by changing its
internal architecture and its dynamics, and as a consequence fulfill goal G again. This
challenge expresses a redesign problem: the given architecture of the agent as
described by CS1 (which entails the old behavioural specification BS1) is insufficient
to entail the new behavioural requirements BS2 imposed by the new environmental
circumstances ES2; the evolution process has to redesign the architecture into one
with internal dynamics described by some CS2 (also more complex), with CS2 ⇒ BS2,
to realise the new requirements on behaviour.

Based on these ideas, the Complexity Monotonicity Thesis can be formalised in the
following manner. Suppose < E1, B1, C1 > and < E2, B2, C2 > are triples of environment,
behaviour and cognitive system, respectively, such that the behaviours Bi are adequate
for the respective environment Ei and realised by the cognitive system Ci. Then the
Complexity Monotonicity Thesis states that

E1 ≤c E2 ⇒ B1 ≤c B2 & B1 ≤c B2 ⇒ C1 ≤c C2

Here ≤c is a partial ordering in complexity, where X ≤c Y indicates that Y is more
complex than X. A special case is when the complexity ordering is assumed to be a
total ordering where for every two elements X, Y either X ≤c Y or Y ≤c X (i.e., they are
comparable), and when some complexity measure cm is available, assigning degrees
of complexity to environments, behaviours and cognitive systems, such that

X ≤c Y ⇔ cm(X) ≤ cm(Y)

where ≤ is the standard ordering relation on (real or natural) numbers. In this case the
Complexity Monotonicity Thesis can be reformulated as

cm(E1) ≤ cm(E2) ⇒ cm(B1) ≤ cm(B2) &
cm(B1) ≤ cm(B2) ⇒ cm(C1) ≤ cm(C2)

The Temporal Complexity Monotonicity Thesis can be used to explain increase of
complexity during evolution in the following manner. Make the following assumption
on Addition of Environmental Complexity by Adaptation, as described above:

• adaptation of a species to an environment adds complexity to this environment

Suppose an initial environment is described by ES0, and the adapted species by
BS0. Then this transforms ES0 into a more complex environmental description ES1.
Based on ES1, the adapted species will have description BS1. As ES1 is more
complex than ES0, by the Complexity Monotonicity Thesis it follows that this BS1 is
more complex than BS0: ES0 ≤ ES1 ⇒ BS0 ≤ BS1. Therefore BS1 again adds
complexity to the environment, leading to ES2, which is more complex than ES1, et
cetera:

ES0 ≤ ES1 ≤ ES2 …

BS0 ≤ BS1 ≤ BS2 …

178 T. Bosse, A. Sharpanskykh, and J. Treur

Note that this argument can also be applied to multiple species at the same time,
i.e., species A increases the complexity of the environment, which causes another
species B to adapt to this more complex environment.

This argument shows that the increase of complexity during evolution can be
related to and explained by two assumptions: the Complexity Monotonicity Thesis,
and the Addition of Environmental Complexity by Adaptation assumption. This paper
focuses on the former assumption.

3 Variations in Behaviour and Environment

To evaluate the approach put forward, a number of cases of increasing complexity are
analysed, starting from very simple stimulus-response behaviour solely depending on
stimuli the agent gets as input at a given point in time. This can be described by a very
simple temporal structure: direct associations between the input state at one time point
and the (behavioural) output state at a next time point. A next class of behaviours,
with slightly higher complexity, analysed is delayed response behaviour: behaviour
that not only depends on the current stimuli, but also may depend on input of the
agent in the past. This pattern of behaviour cannot be described by direct functional
associations between one input state and one output state; it increases temporal
complexity compared to stimulus-response behaviour. For this case, the description
relating input states and output states necessarily needs a reference to inputs received
in the past. Viewed from an internal perspective, to describe mental capabilities
generating such a behaviour, often it is assumed that it involves a memory in the form
of an internal model of the world state. Elements of this world state model mediate
between the agent’s input and output states.

Other types of behaviour go beyond the types of reactive behaviour sketched
above. For example, behaviour that depends in a more indirect manner on the agent’s
input in the present or in the past. Observed from the outside, this behaviour seems to
come from within the agent itself, since no direct relation to current inputs is
recognised. It may suggest that the agent is motivated by itself or acts in a goal-
directed manner. For a study in goal-directed behaviour and foraging, see, for
example, [5]. Goal-directed behaviour to search for invisible food is a next case of
behaviour analysed. In this case the temporal description of the externally observable
behavioural dynamics may become still more complex, as it has to take into account
more complex temporal relations to (more) events in the past, such as the positions
already visited during a search process. Also the internal dynamics may become more
complex. To describe mental capabilities generating such a type of behaviour from an
internal perspective, a mental state property goal can be used. A goal may depend on
a history of inputs. Finally, a fourth class of behaviour analysed, which also goes
beyond reactive behaviour, is learning behaviour (e.g., conditioning). In this case,
depending on its history comprising a (possibly large) number of events, the agent’s
externally observable behaviour is tuned. As this history of events may relate to
several time points during the learning process, this again adds temporal complexity
to the specifications of the behaviour and of the internal dynamics.

To analyse these four different types of behaviour in more detail, four cases of a
food supplying environment are considered in which suitable food gathering

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 179

behaviours are needed. These cases are chosen in such a way that they correspond to
the types of behaviour mentioned above. For example, in case 1 it is expected that
stimulus-response behaviour is sufficient to cope with the environment, whilst in case
2, 3 and 4, respectively, delayed response behaviour, goal-directed behaviour, and
learning behaviour is needed). The basic setup is inspired by experimental literature in
animal behaviour such as [6], [14], [15]. The world consists of a number of positions
which have distances to each other. The agent can walk over these positions. Time is
partitioned in fixed periods (days) of a duration of d time units (hours). Every day the
environment generates food at certain positions, but this food may or may not be
visible, accessible and persistent at given points in time. The four different types of
environment with increasing temporal complexity considered are:

(1) Food is always visible and accessible. It persists until it is taken.
(2) Food is visible at least at one point in time and accessible at least at one later

time point. It persists until it is taken.
(3) Food either is visible at least at one point in time and accessible at least at one later

time point, or it is invisible and accessible the whole day. It persists until it is taken.
(4) One of the following cases holds:

a) Food is visible at least at one point in time and accessible at least at one later
time point. It persists until it is taken.

b) Food is invisible and accessible the whole day. It persists until it is taken.
c) Food pieces can disappear, and new pieces can appear, possibly at different

positions. For every position where food appears, there are at least three
different pieces in one day. Each piece that is present is visible. Each
position is accessible at least after the second food piece disappeared.

Note that there is an accumulating effect in the increase of complexity of these types
of environment. For example, the behaviour of environment (3) is described as the
disjunction of the behaviour of environment (2) and another type of behaviour. For
this reason, it is expected that agents that survive in environment n will also survive in
environment n-1.

4 Modelling Approach

To express formal specifications for environmental, behavioural and cognitive
dynamics for agents, the Temporal Trace Language (TTL, see [2]) is used. This
language is a variant of order-sorted predicate logic. In dynamic property expressions,
TTL allows explicit references to time points and traces. If a is a state property, then,
for example state(γ, t, input(agent)) |= a denotes that this state property holds in trace γ at
time point t in the input state of the agent. Here, a trace (or trajectory) is defined as a
time-indexed sequence of states, where time points can be expressed, for example, by
real or integer values. If these states are input states, such a trace is called an input
trace. Similarly for an output trace. Moreover, an input-output correlation is defined
as a binary relation C : Input_traces x Output_traces between the set of possible input
traces and the set of possible output traces.

180 T. Bosse, A. Sharpanskykh, and J. Treur

In the following sections, the four variations in behaviour and environment as
introduced above are investigated in more detail. For formalising dynamic properties
in TTL that will be used to specify these cases, the following state properties are used:

at(o, p) object o is at position p
visible(sp) an object occurring in the state property sp is visible

 (e.g. as it is not covered by a large object)
accessible(p) position p is accessible (e.g., because there is no enemy at the
 position)
distance(p1, p2, i) the distance between positions p1 and p2 is i
max_dist a constant indicating the maximum distance the agent can
 travel in one step
observed(sp) the agent observes state property sp
performing_action(a) the agent performs action a

For example, a property that describes stimulus-response behaviour of an agent

that goes to food, observed in the past can be expressed and formalised as follows:

At any point in time t,
if the agent observes itself at position p
and it observes an amount of food x at position p'
and position p' is accessible
then at the next time point after t the agent will go to position p'

Formalisation:

∀t ∀x ∀p ∀p’
[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p’)) ∧
 observed(accessible(p’)) ⇒ state(γ, t+1, output(agent)) |= performing_action(goto(p'))]

5 Behavioural Cases

Using the introduced approach to formalise dynamic properties, the four variations in
behaviour and environment are addressed in this section: stimulus-response, delayed-
response, goal-directed, and learning behaviour.

5.1 Stimulus-Response Behaviour

As a first, most simple type of behaviour, stimulus-response behaviour is analysed in
more detail. For this and the following cases of behaviour the following basis
properties EP1-EP5 are used to describe the behaviour of the environment. They are
specified both in a structured semi-formal temporal language, and in the formal
temporal language TTL. Additionally, for every case specific properties of the
environment will be specified.

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 181

Environmental properties

EP1 Sufficient food within reach
At the beginning of every day n (d is the duration of a day), the agent is positioned at
a position p, and a sufficient amount x of food (c is the minimum) is provided at some
position p' within reachable distance from p.
∀n ∃p ∃p’ ∃x ∃i x>c & i≤max_dist &
state(γ, n*d, environment) |= at(agent, p) ∧ at(food(x), p’) ∧ distance(p, p’, i)

EP2 Complete observability
If the agent is at position p, and a(p, p') is a visible state property involving p and a
position p' within reachable distance, then this is observed by the agent. This property
is to be applied to food, distance, accessibility, agent position, and the absence of
these.

∀t ∀x ∀p ∀p’ ∀i
[[i≤max_dist & state(γ, t, environment) |= at(agent, p) ∧ a(p, p’) ∧ visible(a(p, p’)) ∧
 distance(p, p’, i)] ⇒ state(γ, t, input(agent)) |= observed(a(p, p’)))]

EP3 Guaranteed effect of movement
At any point in time t, if the agent goes to position p, then it will be at position p.

∀t ∀p state(γ, t, output(agent)) |= performing_action(goto(p))
 ⇒ state(γ, t+1, environment) |= at(agent, p)

EP4 Guaranteed effect of eating
At any point in time t, if the agent takes food and the amount of food is sufficient for
the agent then the agent will be well fed

∀t [[∀x state(γ, t, output(agent))|= performing_action(take(food(x))) & x≥c]
 ⇒ state(γ, t+1, environment) |= agent_well_fed]

EP5 Reachability of environment
The distances between all positions p in the agent’s territory are smaller than
max_dist. Here, p and p' are variables over the type TERRITORY_POSITION,
which is a subtype of POSITION.

∀t ∀p ∀p’ ∀I state(γ, t, environment) |= distance(p, p’, i) ⇒ i ≤ max_dist

The following environmental properties hold for the stimulus-response case and some
of the other cases considered.

EP6 Food persistence
Food persists until taken by the agent.

∀t1 ∀t2 ∀x ∀p [t1<t2 & state(γ, t1, environment) |= at(food(x), p) &
[∀t t1 ≤ t ≤ t2 ⇒ state(γ, t, output(agent)) |= not(performing_action(take(food(x))))]
 ⇒ state(γ, t2, environment) |= at(food(x), p)]

EP7 Food on one position
Per day, food only appears on one position.

∀n ∀x ∀p ∀p’ ∀t state(γ, n*d, environment) |= at(food(x), p) &
state(γ, t, environment) |= at(food(x), p’) & n*d < t ≤ (n+1)*d ⇒ p = p’

182 T. Bosse, A. Sharpanskykh, and J. Treur

EP8 Complete accessibility
Each position is accessible for the agent (i.e., never blocked by enemies).

∀t ∀p state(γ, t, environment) |= accessible(p)

EP9 Complete visibility
All state properties a(p, p') that are true, are visible (which means that they will be
observed by agents that are close enough, according to EP2). This property is to be
applied to food, distance, accessibility, agent position, and the absence of these.

∀t ∀p ∀p’ state(γ, t, environment) |= a(p, p’) ⇒ state(γ, t, environment(agent)) |= visible(a(p, p’))

Note that the property of an agent being well fed is assumed to be a state property of
the environment, since it refers to the agent’s body state.

For the case of stimulus-response behaviour the environment is characterised by the
following conjunction ES1 of a subset of the environmental properties given above:

ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP8 & EP9

Behavioural Properties
The agent’s stimulus-response behaviour is characterised by the following
behavioural properties.

BP1 Going to observed food
At any point in time t, if the agent observes itself at position p and it observes no food
at position p and it observes that an amount of food x is present at position p' and it
observes that position p' is accessible and it observes that position p' is within
reachable distance then it will go to position p'.

∀t ∀x ∀p ∀p’ [[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧
observed(at(food(x), p’)) ∧ observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist]
 ⇒ state(γ, t+1, output(agent)) |= performing_action(goto(p’))]

BP2 Food uptake
At any point in time t, if the agent observes itself at position p and the agent observes
food at p then it will take the food

∀t ∀x ∀p [[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p))]
 ⇒ state(γ, t+1, output(agent))|= performing_action(take(food(x)))]

Vitality property VP
The animal gets sufficient food within any given day.

∀n ∃t1 [n*d ≤ t1 ≤ (n+1)*d & state(γ, t1, environment) |= agent_well_fed]

Logical relations
Given the dynamic properties specified above, the environmental and behavioural
specifications (in short, ES1 and BS1) for case 1 (stimulus-response behaviour) are as
follows:

 ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 &EP6 & EP7 & EP8 & EP9
BS1 ≡ BP1 & BP2

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 183

Given these specifications, the question is whether they are logically related in the
sense that this behaviour is adequate for this environment, i.e., whether indeed the
following implication holds:

BS1 & ES1 ⇒ VP

To automatically check such implications between dynamic properties at different
levels, model checking techniques can be used. To this end, first the dynamic
properties should be converted from TTL format to a finite state transition format.
This can be done using an automated procedure, as described in [11]. After that, for
checking the implications between the converted properties, the model checker SMV
is appropriate (see URL: http://www.cs.cmu.edu/~modelcheck/smv.html; see also [8]).
SMV has been used to verify (and confirm) the above implication, as well as a
number of other implications shown in this paper.

Concerning the relation between the specification of the cognitive and the
behavioural dynamics: in this case CS1 = BS1. Thus, CS1 ⇒ BS1 also holds.

5.2 Delayed Response Behaviour

In delayed response behaviour, previous observations may have led to maintenance of
some form of memory of the world state: a model or representation of the (current)
world state (for short, world state model). This form of memory can be used at any
point in time as an additional source (in addition to the direct observations). In that
case, at a given time point the same input of stimuli can lead to different behavioural
output, since the world state models based on observations in the past can be
different. This makes that agent behaviours do not fit in the setting of an input-output
correlation based on a direct functional association between (current) input states and
output states. Viewed from an external viewpoint, this type of behaviour, which just
like stimulus-response behaviour occurs quite often in nature, is just a bit more
complex than stimulus-response behaviour, in the sense that it adds complexity to the
temporal dimension by referring not only to current observations but also to
observations that took place in the past.

This leads to the question what kind of complexity in the environment is coped
with this kind of behaviour that is not coped with by stimulus-response behaviour. An
answer on this question can be found in a type of environment with aspects which are
important for the animal (e.g., food or predators), and which cannot be completely
observed all the time; e.g., food or predators are sometimes hidden by other objects:

Environmental properties
For this case the environment described sometimes shows the food, but not always as
in the previous case. It is characterised by the following conjunction ES2 of a subset
of the environmental properties given above, extended with the properties EP10, EP11
and EP12 given below:

ES2 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12

184 T. Bosse, A. Sharpanskykh, and J. Treur

EP10 Temporary visibility of food
Per day, all food that is present is visible for at least one time point, and is accessible
for at least one later time point1.

EP11 Complete visibility of non-food
All state properties that are true, except the presence of food, are visible. Thus, this
property is applied to distance, accessibility, and agent position.

EP12 Complete local observability of food
For all time points, if the agent is at the position p with food then the agent observes
the food (no matter if it is visible, e.g., by smell)

Behavioural properties
Next, dynamic properties are identified that characterise the input-output correlation
of delayed response behaviour, observed from an external viewpoint. Such a dynamic
property has a temporal nature; it can refer to the agent’s input and output in the
present, the past and/or the future. In semi-formal and formal notation, for the case
considered, the input-output correlation for delayed response behaviour can be
characterised by:

BP3 Going to food observed in the past
At any point in time t, if the agent observes itself at position p and it observes no food
at position p and it observes that position p' is accessible and it observes that position
p' is within reachable distance and at some earlier point in time t1 the agent observed
that an amount of food x was present at position p' and at every point in time t2 after
t1 up to t, the agent did not observe that no food was present at p' then at the next
time point after t the agent will go to position p'

∀t ∀x ∀i ∀p ∀p’
[[state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧
 observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist] &
 ∃t1<t [state(γ, t1, input(agent)) |= observed(at(food(x), p')) &
 ∀t2 [t ≥ t2 > t1 ⇒ state(γ, t2, input(agent))|= not(observed(not(at(food(x), p'))))]]
 ⇒ state(γ, t+1, output(agent)) |= performing_action(goto(p'))]

Cognitive properties
Since the external characterisations of delayed response behaviour refer to the agent’s
input in the past, it is assumed that internally the agent maintains past observations by
means of persisting internal state properties, i.e., some form of memory. These
persisting state properties are sometimes called beliefs. For the example case, it is
assumed that an internal state property b1(p) is available, with the following
dynamics:

CP1 Belief formation on food presence
At any point in time t, if the agent observes that food is present at position p then
internal state property b1(p) will hold (i.e., a belief that food is present at p)

1 Formal expressions for all properties can be found in the Appendix at http://

www.cs.vu.nl/~tbosse/complexity.

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 185

CP2 Belief b1 persistence
At any point in time t, if internal state property b1(p) holds and the agent does not
observe the absence of food at position p then at the next time point internal state
property b1(p) still holds

CP3 Going to food believed present
At any point in time t, if the agent observes itself at position p and it observes no food
at position p and it observes that position p' is accessible and it observes that position
p' is within reachable distance and p ≠ p' and internal state property b1(p') holds then
the agent will go to position p'

Logical relations

ES2 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12
BS2 ≡ BP2 & BP3
CS2 ≡ BP2 & CP1 & CP2 & CP3
BS2 & ES2 ⇒ VP

 CS2 ⇒ BS2

5.3 Goal-Directed Behaviour

A next, more complex type of behaviour considered is goal-directed behaviour. This
behaviour is able to cope with environments where visibility can be more limited than
in the environments considered before.

Environmental properties
For this case the environment is characterised by the following expression ES3 based
on a subset of the environmental properties given earlier, extended with property
EP13, given below:

ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &

(EP10 OR (EP8 & EP13))

EP13 Complete invisibility of food
Food is always invisible for the agent (e.g., always covered), unless the agent is at the
same position as the food.

Behavioural properties
The agent’s behaviour exploring positions in order to discover food is characterised
by the following behavioural property:

BP4 Searching for food
At any point in time t, if the agent observes itself at position p and it observes that
position p' is accessible and it observes that position p' is within reachable distance
and it did not visit position p' yet and p' is the position closest to p which the agent did
not visit and it did not observe any food at all yet then at the next time point after t the
agent will go to position p'

186 T. Bosse, A. Sharpanskykh, and J. Treur

∀t ∀p ∀p’
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(accessible(p’)) ∧
observed(distance(p, p’, i)) & i≤max_dist &
 not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p’)] &
 ∀p” [[not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p”)]]
 ⇒ ∃d1 ∃d2 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧
 observed(distance(p, p’’, d2)) & d1<d2] &
 not [∃t’ ∃p’’ ∃x t’≤t & state(γ, t’, input(agent)) |= observed(at(food(x), p’’))]
 ⇒ state(γ, t+1, output(agent)) |= performing_action(goto(p’))

Cognitive properties
To describe the internal cognitive process generating this type of behaviour, the
mental state property goal is used. In particular, for the case addressed here, when the
agent has no beliefs about the presence of food, it will generate the goal to find food.
If it has this goal, it will pro-actively search for food in unexplored positions. This is
characterised by the following dynamic properties:

CP4 Goal formation
At any point in time t, if the agent does not believe that food is present at any position
p then it will have the goal to find food

CP5 Non-goal formation
At any point in time t, if the agent believes that food is present at position p then it
will not have the goal to find food

CP6 Belief formation on visited position
At any point in time t, if the agent observes itself at position p then internal state
property b2(p) will hold (i.e., the belief that it visited p)

CP7 Belief b2 persistence
At any point in time t, if internal state property b2(p) holds then at the next time point
internal state property b2(p) still holds

CP8 Belief formation on distances
At any point in time t, if the agent observes that the distance between position p and p'
is d then internal state property belief(p, p', d) will hold

CP9 Belief persistence on distances
At any point in time t, if internal state property belief(p, p', d) holds then at the next
time point internal state property belief(p, p', d) still holds

CP10 Going to closest position
At any point in time t, if the agent observes itself at position p and it observes that
position p' is accessible and it observes that position p' is within reachable distance
and it has the goal to find food and it believes it did not visit p' yet and p' is the
position closest to p of which the agent believes it did not visit it then at the next time
point after t the agent will go to position p'

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 187

Logical relations
ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &

 (EP10 OR (EP8 & EP13))
BS3 ≡ BP2 & BP3 & BP4
CS3 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10
BS3 & ES3 ⇒ VP
CS3 ⇒ BS3

5.4 Learning Behaviour

A final class of behaviour analysed is learning behaviour. In this case, depending on
its history comprising a (possibly large) number of events, the agent’s externally
observable behaviour is tuned to the environment’s dynamics. In the case addressed
here, in contrast to the earlier cases, the environment has no guaranteed persistence of
food for all positions. Instead, at certain positions food may come and go (e.g.,
because it is eaten by competitors). The agent has to learn that, when food often
appears (and disappears) at a certain position, then this is an interesting position to be,
because food may re-appear at that position (but soon disappear again).

Environmental properties
For this case the environment is characterised by the following expression ES4 based
on a subset of the environmental properties given earlier, extended with property
EP14, given below.

ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12)
 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14))

EP14 Food reoccurrence
Every piece of food disappears and reappears at least 2 times per day, of which at
least after the second disappearance its position will be accessible.

Behavioural properties
The agent’s behaviour for this case should take into account which positions show
reoccurence of food. The following behavioural property characterises this.

BP5 Being at useful positions
At any point in time t, if the agent observes itself at position p and it observes that
position p' is accessible and it observes that position p' is within reachable distance
and for all positions p" that the agent observed food in the past, the agent later
observed that the food disappeared and at some earlier point in time t1 the agent
observed that food was present at position p' and after that at time point t2 before t the
agent observed no food present at position p' and after that at time point t3 before t the
agent again observed the presence of food at position p' and after that at a time point
t4 before t the agent again observed no food present at position p' and p' is the closest
reachable position for which the above four conditions hold then at the next time
point after t the agent will go to position p'

∀t ∀p ∀p’ ∀x
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧

188 T. Bosse, A. Sharpanskykh, and J. Treur

observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist &
∀t’ ∀p’’ ∀x’ [t’<t & state(γ, t’, input(agent)) |= observed(at(food(x’), p’’))
⇒ ∃t’’ t’<t’’≤t &
 state(γ, t’’, input(agent)) |= observed(not(at(food(x’), p’’)))]
 & ∃t1 ∃t2 ∃t3 ∃t4 [t1<t2<t3<t4<t &
 state(γ, t1, input(agent)) |= observed(at(food(x), p’)) &
 state(γ, t2, input(agent)) |= observed(not(at(food(x), p’))) &
 state(γ, t3, input(agent)) |= observed(at(food(x), p’)) &
 state(γ, t4, input(agent)) |= observed(not(at(food(x), p’)))]
 & ∀p” [∃t1 ∃t2 ∃t3 ∃t4 [t1<t2<t3<t4 &
 state(γ, t1, input(agent)) |= observed(at(food(x), p”)) &
 state(γ, t2, input(agent)) |= observed(not(at(food(x), p”))) &
 state(γ, t3, input(agent)) |= observed(at(food(x), p”)) &
 state(γ, t4, input(agent)) |= observed(not(at(food(x), p”)))] ⇒

 ∃d1 ∃d2
 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧
 observed(distance(p, p’’, d2)) & d1<d2]

 ⇒ state(γ, t+1, output(agent)) |= performing_action(goto(p’))

Cognitive properties
The internal cognitive dynamics has to take into account longer histories of positions
and food (re)appearing there. This is realised by representations that are built up for
more complex world properties, in particular, not properties of single states but of
histories of states of the world. For example, at a certain time point, it has to be
represented that for a certain position in the past food has appeared twice and in
between disappeared. The state properties b3(p, q) play the role of representations of
world histories on food (re)occurrence.

CP11 Initial mental state
At the beginning of every day n, for all positions p, internal state property b3(p, 0)
holds (i.e. a belief that there is no food at p)

CP12 Belief update on food presence
At any point in time t, for q ∈ {0,2}, if internal state property b3(p, q) holds and the
agent observes food at position p then internal state property b3b(p, q+1) will hold

CP13 Belief update on food absence
At any point in time t, for q ∈ {1,3}, if internal state property b3(p,q) holds and the
agent observes no food at position p then internal state property b3(p,q+1) will hold

CP14 Belief b3 persistence
At any point in time t, for all q, if internal state property b3(p,q) holds then at the next
time point internal state property b3(p,q) still holds

CP15 Going to interesting position
At any point in time t, if the agent observes itself at position p and it observes that
position p' is accessible and it observes that position p' is within reachable distance
and it has the goal to find food and p' is the position closest to p of which the agent
believes that it is an attractive position then at the next time point after t the agent will
go to position p'

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 189

Here, b3(p,4) represents the belief that food was twice present at p, and subsequently
disappeared (in other words, a belief that p is an attractive position, since food might
show up again). Note that, although the mechanism described here is quite different
from, e.g., machine learning, this type of behaviour nevertheless can be qualified as
learning behaviour. The reason for this is that the behaviour can be split into two
distinct phases: one in which nothing was learned, and one in which the agent has
learned which positions are useful by maintaining a history of previous observations.

Logical relations
ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12)

 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14))
BS4 ≡ BP2 & BP3 & BP4 & BP5
CS4 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 &

 CP11 & CP12 & CP13 & CP14 & CP15
BS4 & ES4 ⇒ VP
CS4 ⇒ BS4

6 Formalisation of Temporal Complexity

The Complexity Monotonicity Thesis discussed earlier involves environmental,
behavioural and cognitive dynamics of living systems. In Section 2 it was shown that
based on a given complexity measure cm this thesis can be formalised by:

cm(E1) ≤ cm(E2) ⇒ cm(B1) ≤ cm(B2) &
cm(B1) ≤ cm(B2) ⇒ cm(C1) ≤ cm(C2)

What remains is the existence or choice of the complexity measure function cm. To
measure degrees of complexity for the three aspects considered, a temporal
perspective is chosen: complexity in terms of the temporal relationships describing
them. For example, if references have to be made to a larger number of events that
happened at different time points in the past, the temporal complexity is higher. The
temporal relationships have been formalised in the temporal language TTL based on
predicate logic. This translates the question how to measure complexity to the
question how to define complexity of syntactical expressions in such a language. In
the literature an approach is available to define complexity of expressions in predicate
logic in general by defining a function that assigns a size to every expression [7]. To
measure complexity, this approach was adopted and specialised to the case of the
temporal language TTL. Roughly spoken, the complexity (or size) of an expression is
(recursively) calculated as the sum of the complexities of its components plus 1 for
the composing operator. In more details it runs as follows.

Similarly to the standard predicate logic, predicates in the TTL are defined as
relations on terms. The size of a TTL-term t is a positive natural number s(t)
recursively defined as follows:

(1) s(x)=1, for all variables x.
(2) s(c)=1, for all constant symbols c.
(3) s(f(t1,…, tn))= s(t1) + … + s(tn) + 1, for all function symbols f.

190 T. Bosse, A. Sharpanskykh, and J. Treur

For example, the size of the term observed(not(at(food(x), p))) from the property BP1
(see the Appendix) is equal to 6.

Furthermore, the size of a TTL-formula ψ is a positive natural number s(ψ)
recursively defined as follows:

(1) s(p(t1,…, tn))= s(t1) + … + s(tn) +1, for all predicate symbols p.
(2) s(¬ϕ)=s((∀x) ϕ)= s((∃x) ϕ) = s(ϕ)+1, for all TTL-formulae ϕ and variables x.
(3) s(ϕ&χ) = s(ϕ|χ) = s(ϕ⇒χ) = s(ϕ)+ s(χ)+1, for all TTL-formulae ϕ, χ.

In this way, for example, the complexity of behavioural property BP1 amounts to 53,
and the complexity of behavioural property BP2 is 32. As a result, the complexity of
the complete behavioural specification for the stimulus-response case (which is
determined by BP1 & BP2) is 85.

Using this formalisation of a complexity measure as the size function defined
above, the complexity measures for environmental, internal cognitive, and
behavioural dynamics for the considered cases of stimulus-response, delayed
response, goal-directed and learning behaviours have been determined. Table 1
provides the results (see the Appendix for all properties).

Table 1. Temporal complexity of environmental, behavioural and cognitive dynamics

Case Environmental
dynamics

Behavioural
dynamics

Cognitive
dynamics

Stimulus-
response

262 85 85

Delayed
response

345 119 152

Goal-directed 387 234 352
Learning 661 476 562

The data given in Table 1 confirm the Complexity Monotonicity Thesis put
forward in this paper, that the more complex the environmental dynamics, the more
complex the types of behaviour an agent needs to deal with the environmental
complexity, and the more complex the behaviour, the more complex the internal
cognitive dynamics.

7 Discussion

In this paper, the temporal complexity of environmental, behavioural, and cognitive
dynamics, and their mutual dependencies, were explored. As a refinement of
Godfrey-Smith’s Environmental Complexity Thesis [4], the Complexity
Monotonicity Thesis was formulated: for more complex environments, more complex
behaviours are needed, and more complex behaviours need more complex internal
cognitive dynamics. A number of example scenarios were formalised in a temporal
language, and the complexity of these formalisations was measured. Complexity of
environment, behaviour and cognition was taken as temporal complexity of dynamics
of these three aspects, and the formalisation of the measurement of this temporal

 On the Complexity Monotonicity Thesis for Environment, Behaviour and Cognition 191

complexity was based on the complexity of the syntactic expressions to characterise
these dynamics in a predicate logic language, as known from, e.g., [7]. The outcome
of this approach is that the results support the Complexity Monotonicity Thesis.

Obviously, the results as reported in this paper are no generic proof for the
correctness of the Complexity Monotonicity Thesis. Instead, the paper should rather
be seen as a case study in which the thesis was tested positively. However, the
approach taken for this test was not completely arbitrary: the used complexity
measure is one of the standard approaches to measure complexity of syntactical
expressions [7]. Moreover, the formal specifications were constructed very carefully,
to ensure that no shorter specifications exist that are equivalent. Although no formal
proof is given that the used specifications are indeed the shortest possible ones, the
construction of these specifications has been an iterative process in which multiple
authors have participated. To represent the specifications, the language TTL was just
used as a vehicle. Various similar temporal languages could have been used instead,
but we predict that this would not significantly influence the results.

Nevertheless, there are a number of alternative possibilities for measuring
complexity that might in fact influence the results. Among these is the option to use
complexity measures from information theory based on the amount of entropy of a
system, such as [1]. In future work, such alternatives will be considered as well.
Another challenging direction for future work is the possibility to establish a uniform
approach for specification of dynamic properties for environment, behaviour, and
cognition. Such an approach may, for example, prescribe a limited number of
predefined concepts that can be used within the dynamic properties.

Another issue that is worth some discussion is the fact that the Complexity
Monotonicity Thesis can also be considered in isolation of Godfrey-Smith’s
Environmental Complexity Thesis. Although it was used as a source of inspiration to
explore for the more refined Complexity Monotonicity Thesis, the Environmental
Complexity Thesis as such was not investigated in this paper. Doing this, again from
an agent-based modelling perspective, is another direction for future work. To this
end, techniques from the area of Artificial Life may be exploited, e.g., to perform
social simulations and observe whether more complex agents evolve in a way that
supports the Environmental Complexity Thesis.

In [4], in particular in Chapters 7 and 8, mathematical models are discussed to
support the Environmental Complexity Thesis, following, among others [9] and [12].
These models are made at an abstract level, abstracting from the temporal dimension
of the behaviour and the underlying cognitive architectures and processes. Therefore,
the more detailed temporal complexity as addressed in this paper is not covered.
Based on the model considered, Godfrey-Smith [4] concludes that the flexibility to
accommodate behaviour to environmental conditions, as offered by cognition, is
favoured when the environment shows (i) unpredictability in distal conditions of
importance to the agent, and (ii) predictability in the links between (observable)
proximal and distal. This conclusion has been confirmed to a large extent by the
formal analysis described in this paper. Comparable claims on the evolutionary
development of learning capabilities in animals are made in work such as [13] and
[10]. According to these authors, learning is an adaptation to environmental change.
All these are conclusions at a global level, compared to the more detailed types of
temporal complexity considered in our paper, where cognitive processes and

192 T. Bosse, A. Sharpanskykh, and J. Treur

behaviour extend over time, and their complexity can be measured in a more detailed
manner as temporal complexity of their dynamics.

References

1. Berlinger, E.: An information theory based complexity measure. In: Proceedings of the
Natural Computer Conference, pp. 773–779 (1980)

2. Bosse, T., Jonker, C.M., Meij, L., van der Sharpanskykh, A., Treur, J.: Specification and
Verification of Dynamics in Cognitive Agent Models. In: IAT 2006. Proceedings of the
Sixth International Conference on Intelligent Agent Technology, pp. 247–254. IEEE
Computer Society Press, Los Alamitos (2006)

3. Darwin, C.: The Descent of Man. John Murray, London (1871)
4. Godfrey-Smith, P.: Complexity and the Function of Mind in Nature. Cambridge University

Press, Cambridge (1996)
5. Hills, T.T.: Animal Foraging and the Evolution of Goal-Directed Cognition. Cognitive

Science 30, 3–41 (2006)
6. Hunter, W.S.: The delayed reaction in animals. Behavioral Monographs 2, 1–85 (1912)
7. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about computer

systems. Cambridge University Press, Cambridge (2000)
8. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem.

PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1992.
Published by Kluwer Academic Publishers (1993)

9. Moran, N.: The evolutionary maintenance of alternative phenotypes. American
Naturalist 139, 971–989 (1992)

10. Plotkin, H.C., Odling-Smee, F.J.: Learning, Change and Evolution. Advances in the Study
of Behaviour 10, 1–41 (1979)

11. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems.
In: ECAI 2006. Proceedings of the 17th European Conference on Artificial Intelligence,
pp. 290–294. IOS Press, Amsterdam (2006)

12. Sober, E.: The adaptive advantage of learning versus a priori prejustice. In: From a
Biological Point of View, Cambridge University Press, Cambridge (1994)

13. Stephens, D.: Change, regularity and value in evolution of animal learning. Behavioral
Ecology 2, 77–89 (1991)

14. Tinklepaugh, O.L.: Multiple delayed reaction with chimpanzees and monkeys. Journal of
Comparative Psychology 13, 207–243 (1932)

15. Vauclair, J.: Animal Cognition. Harvard Univerity Press, Cambridge (1996)
16. Wilson, O.: The Diversity of Life. Harvard University Press, Cambridge (1992)

Structured Argumentation in a Mediator

for Online Dispute Resolution

Ioan Alfred Letia and Adrian Groza

Technical University of Cluj-Napoca
Department of Computer Science

Baritiu 28, RO-400391 Cluj-Napoca, Romania
{letia,adrian}@cs-gw.utcluj.ro

Abstract. Online dispute resolution is becoming the main method when
dealing with a conflict in e-commerce. A family of defeasible reason-
ing patterns is used to provide a useful link between dispute resolution
agents and legal doctrines. The proposed argumentation framework com-
bines defeasible logic with temporal reasoning and argumentation with
level of certainty. The evaluation of arguments depends on the stage
of the dispute: commencement, discovery, pre-trial, arbitration, accord-
ing to current practice in law. By applying the open world assumption
to the rules, the argumentative semantics of defeasible logic is enriched
with three types of negated rules which offer symmetrical means of argu-
mentation for both disputants. A corollary of this extension consists in
defining a specialized type of undercutting defeater. The theory is illus-
trated with the help of a concrete business-to-client case in a prototype
implemented system.

1 Introduction

Online Dispute Resolution (ODR) promises to become the predominant ap-
proach to settle e-commerce disputes. To reach this statute it needed ten years of
fast and sustained development [1]: starting in 1996 as a hobby, an experimental
stage sustained by academics and non-profit organizations during 1997-1998, an
entrepreneurial stage from 1999 (75% rate of success as business), and begin-
ning with 2003 there have been much governmental effort and many projects
to institutionalize the online dispute resolution process. It started initially in
the USA, followed by Australia where automatic ODR systems are functioning
under a legal framework (for distributing the marital property in divorce cases),
and now Europe gives sensitive attention to ODR services.

From the business viewpoint the enthusiasm for ODR is caused by two main
points. Firstly, the business entities manifest less concern over obtaining the best
solution, but they are more interested in processing the cases faster and cheaper
than can be done in a trial. Secondly, the ODR process is private, meaning
that no inside information of the companies is revealed to third parties. From
the academic perspective ODR involves more than simply integrating e-mail
communications, chat rooms, or video streaming. The first book [2] published

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 193–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 I.A. Letia and A. Groza

on this issue suggests that technology comes in as a fourth party in ODR, thereby
integrating the earlier ideas of computer expert systems with the idea of easy
access to justice. Practically, ODR is shaping the way we handle disputes in the
technological age [3].

In order to face the increasing number of disputes in e-commerce, there is
an acute need for flexible ODR support systems, both to enhance the expertise
level of the mediator, and to structure argumentation. We approach the me-
diation to be carried out by software agents from the point of view of human
negotiation where the capacity or ability to get things done covers the power of:
competition, legitimacy, risk taking, commitment, expertise, the knowledge of
“needs”, investment, rewarding or punishing, identification, morality, precedent,
persistence, persuasive capacity, attitude. Very important dimensions of such a
real problem are also time and information. Quite aware of the difficulties that
lie ahead of such a task, we embark in this research on the road of developing a
reasonable flexible argumentation framework, according to the current practice
in law, which can be effectively employed in online dispute resolution agents. In
recent years several researchers acknowledged the value of argumentation theory
for ODR [4]. Flexibility in configuring ODR systems is both an opportunity and
a challenge. The opportunity is that any business can, quite quickly, have its
own ”court” specialized in disputes that might occur in its specific business do-
main. The challenge is that the technical instrumentation must simultaneously
satisfy the business viewpoint asking for trust [5] and the legal viewpoint, which
requires accordance with the current practice in law.

In the next section we formalize the argumentation framework by defining
both sustaining and defeating rules for a claim. In section 3 we empower agents
with defeasible reasoning patterns, followed by guidelines about how this method
can be suitably applied to current practice in law in section 4. Section 5 illustrates
how mediator agents can deal with different phases of the dispute resolution
process. We end with related work and conclusions.

2 Argumentation Framework

The proposed framework exploits the argumentation semantics of defeasible
logic, which is proved to be the most suitable choice for legal reasoning [6].
We enrich the defeasible logic of Governatori [7] with: i) interval-based temporal
reasoning, ii) level of certainty, and iii) negated rules. By introducing interval-
based reasoning we attempt to provide a more appropriate framework for prac-
tical scenarios, having the possibility to model contract deadlines. The levels
of certainty for weighting arguments are meant to better handle incomplete in-
formation, vagueness, or fuzziness of the terms implied in the dispute, but also
they could be very useful when taking decision of accepting or not an argument,
depending on the dispute phases (see section 5). The negated rules aim to offer
symmetrical means of argumentation between disputants.

Structured Argumentation in a Mediator for Online Dispute Resolution 195

Definition. A theory in temporal defeasible logic (TDL) is a structure 〈F , R〉
formed by a finite set of facts f(β)[a, b] ∈ F valid at time t, a ≤ t ≤ b, and a
finite set of rules r(γ) ∈ R, with certainty factors β, γ ∈ (0..1]. A fact f(β) ∈ F
is strict if β = 1 and defeasible if β < 1.

The rules are split in two disjoint sets: the set of support rules Rsup which can
be used to infer conclusions and the set of defeaters Rdef that can be used only
to block the derivation of some conclusions.

Definition. A rule r(γ) ∈ Rsup is strict (→) iff γ = 1, with the set of strict
rules Rs = {r(γ) ∈ Rsup|γ = 1}. A rule r(γ) ∈ Rsup is defeasible (⇒) iff γ < 1,
with the set of defeasible rules Rd = {r(γ) ∈ Rsup|γ < 1}.

Strict rules are rules in the classical sense, that is whenever the premises are
indisputable, then so is the conclusion, while defeasible rules are rules that can be
defeated by contrary evidence. Following Pollock’s terminology [8], a defeasible
conclusion q can be defeated either by inferring the opposite one ∼ q with a
superior certainty factor (rebuttal defeater), or by attacking (� q) the link
between the premises and the conclusion q (undercutting defeater1).

Facts within TDL are enhanced with validity intervals. For premise a[x, y]
and a conclusion b[u, v] the following weak semantics is used: if a is valid in
at least one moment within [x, y], then b is valid in all moments from [u, v].
In this interpretation (imprecise premise, precise conclusion), the validity in-
terval [a,b] of a rule depends on the activation intervals of its own premises:
ri(γ)[a, b] : q1(β1)[a1, b1], ...qk(βk)[ak, bk] ⇒ q0(β0)[a0, b0], with a = min(ai) and
b = max(bi), i ∈ [1..k]. For the particular case when a defeasible rule has only
one premise, its activation interval is synonym to the validity of that premise:
q1[a1, b1] ⇒ q0[a0, b0] ⇔ (q1 ⇒ q0[a0, b0])[a1, b1]. This feature is used in nested
rules2.

Similar to facts, the rules acting as premises or conclusion within the body of a
nested rule can appear negated. We use the following notations: � for ¬ (a → b),
meaning that ”a does not strictly determine b”, � for ¬ (a ⇒ b), meaning that ”a
does not defeasibly determine b”, and
� for ¬ (a � b) meaning that ”a does not
defeat b”. We note by Rns the set of negated strict rules, by Rnd the set of negated
defeasible rules, and by Rndef the set of negated defeaters. The problem consists
in giving a proper interpretation to a negated rule. Firstly, the negated rule
represents a counterargument to the opposite rule, negated rules having the same
role as an undercutting defeater, attacking the links between the premises and the
conclusion. The difference consists in the fact that a defeater of the consequent

1 Intuitively, an undercutting defeater argues that the conclusion is not sufficiently
supported by its premises.

2 In our approach, rules are allowed to appear as premises or conclusions within other
rules. The general case of such nested rule is represented by: ri(γi) : rj [a2, b2] ⇒
rk[a3, b3], where the existence of the rule rj fires the conclusion rk, which can be seen
as a dynamic rule. Another technical approach [9] consists in using an objectivation
operator to translate a meta-level expression to an object-level expression.

196 I.A. Letia and A. Groza

Claim: Harry is a British subject now.
Datum: Harry was born in Bermuda in 1937.

Harry is become an American citizen[1966,1966].
Very probably Harry speaks English.

Warrant : A man born in Bermuda will generally be a British subject.
English speakers are usually British subject.

Backing : Civil Code 123 provides that persons born in Bermuda
are generally British subjects.

Exception: An American Citizen cannot be a British subject.
Counter-example: Speaking English does not mean one is a British subject.

Harry Born Bermuda(1.0)[1937, 1937]
Harry American Citizen(1.0)[1960, 1960]
Harry Speaks English(0.95)[1937, now]
r1 : (0.9) : Born Bermuda[t, t] ⇒ British Subject[t, now]
r2 : (0.5) : Speak English[1, 1] ⇒ [t, t]British Subject[t, t]
r3 : (0.9)Harry American Citizen[1, 1] � British Subject[2, 2]).
r4 : (0.9)Speak English[1, 1] � British Subject[t, t]).
r5 : valid code 123[0, t] → (Born Bermuda[t, t] ⇒ British Subject[t, now]).

Fig. 1. A special type of undercutting defeater: negated rules

q attacks all rules which sustain q, whilst the negated rule attacks a single rule
sustaining the respective conclusion3. The version of Toulmin’s standard example
about British citizenship in figure 1 illustrates this difference. Here, the rule r4
attacks only the rule r2, which is defeated. Opposite, the undercutting defeater
r3 attacks both r1 and r2 with a stronger certainty factor, blocking the claim
+∂British Subject : now. We use Pollock’s undercutting defeaters to model
exceptions and negated rules in representing counter-examples. Undercutting
defeaters or negated rules cannot be used to draw a conclusion, their only use is
to prevent some conclusions. Practically, introducing negated rules, we extend
the open world assumption to the rules. A relation between two terms a and
b can be positive (a → b), negative (a � b), or unspecified. Pairs of relations

ϕ ∼ ϕ

q ¬q, X → ¬q, X ⇒ ¬q

A → q ¬q, X → ¬q, A � q

A ⇒ q ¬q, X → ¬q, X ⇒ ¬q, X � ¬q, A � q

A � q A �� q

A � q A → q

A � q A ⇒ q

A �� q A � q

Fig. 2. Attacking a sentence ϕ depends on its type

3 If defeaters represent rules used to block the derivation of some conclusion q, the
negated rules are used to block the activation of a specific support argument for q.

Structured Argumentation in a Mediator for Online Dispute Resolution 197

provide symmetrical means of argumentation for both disputants. The type of
counterargument depends on the type of the current sentence ϕ: fact, support
rule, defeater (figure 2). Here, one can see that the support rules (→, ⇒) can
be attacked in different ways. The negated rule A
� q represents an argument
in favor of q, because it attacks the undercutting defeater A � q. The second
utility of the negated rules is the dynamic elimination of some arguments from
the knowledge base. The existence of a negated rule allows the deactivation of a
rule, when the certainty factor is strong enough.

3 Types of Agents for ODR

A family of defeasible reasoning patterns is discussed next, employed in dispute
resolution agents for more flexibility of the decision. The strategy of an agent con-
sists of three orthogonal components which modularly capture different concerns
of the problem: basic component, tactical component, and attitude component.

3.1 Basic Component

Fuzzy Inference. Using the weakest link principle for deductive arguments [8],
the conclusion q0 is as good as the weakest premise, given by min(β1, ..., βk).
Additionally, the certainty factor is also influenced by the strength γ of the
inferencing rule (figure 3). The figure presents the generalized modus ponens
where given the premises qi(βi)[ti] valid at time ti required by the rule ri, the
conclusion q0 is inferred with a strength equal to the minimum between the
strength of the premises βi and the strength of the rule ri.

rule ri : q0[a0, b0]
γ←− q1[a1, b1] ∧ ∧ qk[ak, bk]

facts : q1(β1)[t1], a1 ≤ t1 ≤ b1.................., qk(βk)[tk], ak ≤ tk ≤ bk

q0(min(β1,, βk, γ)[ai], ∀ai, a0 ≤ ai ≤ b0

Fig. 3. Inferring the conclusion q0 when no valid defeaters exist

Probabilistic inference. A probabilistic approach of computing the certainty
factor of a conclusion would multiply the certainty factors of all premises. Practi-
cally, the certainty factor depends on the number of premises. In this probabilistic
context, the temporal persistence issue can also be considered. Suppose the fact
a having the certainty factor βa is valid at time t. The following interpretation
could arise: if a at t then there is a defeasible reason to infer a at t + Δt, the
certainty factor for a being a monotonic decreasing function of argument Δt.
A typical scenario might be: the probability that the new business partner will
breach the contract is 0.2. This probability decreases as time passes and the
contract meets its time of maturity. Similarly, an agent believes that his busi-
ness partner is trust-able with a factor of 0.6. If nothing defeats this believe in
time, the agent increases the trust in the partnership as the business runs. By

198 I.A. Letia and A. Groza

default we consider that the certainty factor is constant in time and we provide
mechanisms to adjust it for each scenario.

3.2 Tactical Component

The same conclusion q can be sustained by several arguments with different
degrees of reliance. The tactical component defines how an agent handles the
accrual of such valid arguments. Let n be the number of valid derivations of
the consequent q and cf [qi] the certainty factor of the inference number i of
q, i ∈ [1..n]. Similarly, m is the number of valid undercutting defeaters (both
defeaters and negated rules) of the sentence q and we note by cf [∼ qj] the
certainty factor of the j defeater of q, j ∈ [1..m]. If p is the number of valid
rebuttal defeaters, we note with cf [¬qk] the certainty factor of the k rebuttal
defeater for q, k ∈ [1..p].

Persuasion Agent. In some situations, independent reasons supporting the
same action provide stronger arguments in favor of that conclusion. For instance,
the testimony of two witnesses is required in judicial cases. This approach is
appropriate for practical reasoning, when the decision is about what actions to
perform [8] or evidential reasoning [10]. One issue related to this agent regards
the difficulty to identify independent reasons. Thus, an argument presented in
different forms contributes with all its avatars to the certainty factor. Similarly,
an argument subsumed by another general argument also contributes to the
certainty factor. Correlated to the same judicial example, if the two witnesses
are kin or they conferred with each other, only one testimony is accepted in the
trial. The accrual of dependent arguments is not necessarily useless. Changing
the perspective, this case can be valuable in persuasion dialogs, where an agent,
by repeatedly posting the same argument in different representations, will end
in convincing his partner to accept that sentence.

A persuasion agent computes the certainty factor of the thesis q under dispute
as follows. Firstly, it considers all the accepted arguments supporting the claim
q at time t. This amount is decreasing by all his objections about deriving q,
in our case all the undercutting defeaters. If the remaining certainty factor is
still greater than all the existing support for the opposite conclusion ¬q, the
thesis is successfully established. Formally, the model of persuasion based on the
defeasible pattern of inference becomes:

cf [q] =

⎧
⎪⎨

⎪⎩

min(1,
n∑

i=1

cf [qi] −
m∑

j=1

cf [∼ qj]),
n∑

i=1

cf [qi] −
m∑

j=1

cf [∼ qj] >

p∑

k=1

cf [¬qk]

0, otherwise

Epistemic Agent. In reasoning about what to believe or epistemic reasoning
the accrual of arguments does not hold [8]. The sentence q is inferred if it has
a greater support than any of the undercutter or rebuttal defeaters, but the
certainty factor is not diminished:

cf [q] =

{
max(cf [qi]), max(cf [qi]) > max(cf [¬qk], cf [∼ qj])

0, otherwise

Structured Argumentation in a Mediator for Online Dispute Resolution 199

The choice between a persuasion or an epistemic agent depends on the context. A
hybrid agent would include modalities such as action or knowledge for capturing
practical and, respectively, epistemic reasoning, with the certainty factor of the
conclusion computed accordingly.

Rigorous Agent. A rigorous agent will treat differently each type of defeater.
Thus, only the strongest undercutting defeater contributes to the decreasing of
the certainty factor. If the remaining strength of the conclusion overwhelms the
most powerful rebuttal defeater, the respective conclusion is derived.

cf [q] =

⎧
⎪⎨

⎪⎩

max(cf [qi]) − max(cf [∼ qj], max(cf [qi]) − max(cf [∼ qj])

> max(cf [¬qk])

0, otherwise

Next we present the derivation formula of a consequent according to the reason-
ing strategy of the rigorous agent. A conclusion in TDL is a tagged literal which
can have the following forms: i) +Δq : t ⇔ q is definitely provable at time t in
TDL, using only strict facts and rules (figure 4); ii) −Δq : t ⇔ q is not definitely
provable at time t in TDL; iii) +∂q : t ⇔ q is defeasibly provable at time t in
TDL (figure5); iv) −∂q : t ⇔ q is not defeasibly provable at time t in TDL.

+Δ:
If P (i + 1) = +Δq : t then

(1) ∃q(β)[u, v] ∈ F and β = 1 and u ≤ t ≤ v or
(2) ∃r ∈ Rs[q[u, v]] with u ≤ t ≤ v such as

(2.1)∀a[x1, y1] ∈ A(r)∃t′ : +Δa : t′ ∈ P (1..i) and x1 ≤ t′ ≤ y1

(2.2) � ∃ns ∈ Rns[r]

Fig. 4. Definite proof for the consequent q at time t for the rigorous agent

A conclusion q is strictly provable at time t (figure 4) if (1) q is a strict fact
valid at time t or (2) there exists a strict rule with conclusion q[u, v] and the
instant of time t within [u, v], which rule, (2.1) for all its antecedents a[x1, y1],
there is a time t′ when they are strictly valid and (2.2) there is no strict negated
rule ns, attacking rule r.

Defeasible derivations have an argumentation like structure [7]: firstly, we
choose a supported rule having the conclusions q we want to prove, secondly
we consider all the possible counterarguments against q, and finally we rebut all
the above counterarguments showing that, either some of their premises do not
hold, or the rule used for its derivation is weaker than the rule supporting the
initial conclusion q. The sentence q is defeasibly provable at time t (figure 5) if
(1) it is strictly provable at t, or (2) there is a valid support for q either (2.1) it
is a defeasible fact valid at t, or (2.2) there exists a rule with all premises valid
sustaining that conclusion q and it is not defeated by (2.3) a negated rule with a
stronger certainty factor, or (2.4) by an undercutting defeater def where (2.4.1)
time t is not within the validity interval of the defeater, or (2.4.2) the defeater

200 I.A. Letia and A. Groza

+∂:
If P (i + 1) = +∂q : t then
(1) +Δq : t ∈ P (1..i) or
(2) q is supported

(2.1) ∃q(β)[u, v] ∈ F and β < 1 and t ∈ [u, v] or
(2.2) ∃r(γr) ∈ Rsup[q[u, v]], ∀a[x1, y1] ∈ A(r)∃t′ such as +∂a : t′ ∈ P (1..i) and

t′ ∈ [x1, y1])
and not defeated
(2.3) ∀nd(γnd) ∈ Rnd[r] ∪ Rns[r]], γr > γnd and
(2.4) ∀def(γdef) ∈ Rdef [q[u1, v1]]or

(2.4.1) t �∈ [u1, v1] or
(2.4.2) ∃a[x1, y1] ∈ A(def) ∀t′ ∈ [x1, y1] − ∂a : t′ or
(2.4.3) ∃ndef(γndef) ∈ Rndef [def], γndef > γdef and

(2.5) ∀d(γd) ∈ Rsup[∼ q[u2, v2]] with
∀a[x2, y2] ∈ A(d), ∃t′ ∈ [x2, y2] + ∂a : t′, t ∈ [u2, v2] either
(2.5.1) ∃nnd(γnnd) ∈ Rnd[d] ∪ Rns[d], γnnd > γd, or
(2.5.2) γr − γdef > γd

Fig. 5. Defeasible derivation of consequence q at time t for the rigorous agent

has an antecedent a which cannot be derived, or (2.4.3) there exists a negated
defeater stronger than def , and (2.5) for all valid rebuttal defeaters d either
(2.5.1) there is a negated rule which defeats d or (2.5.2) the support for conclusion
q after it is attacked by the undercutter defeaters remains stronger than all the
valid rebuttal defeaters. The strict order relation in (2.3), (2.4.3), and (2.5.2)
provides a skeptical reasoning mechanism, meaning that none of q : t and ∼ q : t
is derived when they have equal support. Allowing the ambiguity propagation
increases the number of inferred conclusions, useful in the argumentation process
of ODR systems oriented towards solution rather than finding the degree of guilt.

3.3 Attitude Component

The attitude component defines the argumentative attitude of an agent towards
other participants, making a distinction between the agent’s private collection
of arguments and its public uttered sentences. We adapt the claim-attitude and
concede-attitude [11], defining the level of proof sufficient to convince the oppo-
nent that a given sentence is true, to our defeasible formalism.

The following standards of proofs from current legal practice are modeled:
scintilla of evidence, reasonable suspicion4, preponderance of evidence5, clear
and convincing evidence, and beyond reasonable doubt6.
4 Reasonable suspicion is a low standard of proof used to determine whether a brief

investigative stop or a brief search by a police officer is warranted.
5 Also known as the ”balance of probabilities”, this standard is met if the proposition

is more likely to be true than not true.
6 This means that the proposition must be proved to the extent that there is no

”reasonable doubt” in the mind of a reasonable person, such as 90% certain in the
US.

Structured Argumentation in a Mediator for Online Dispute Resolution 201

Definition. Claim-attitude at time t

– A confident agent can claim any sentence q : t for which there is a valid
support rule r ∈ Rsup (scintilla of evidence).

– A careful agent can claim any proposition q : t if there is no valid rebuttal
defeater sustaining the opposite sentence ¬q : t (reasonable suspicion).

– A precaution agent can claim any proposition q : t if there is no valid rebuttal
or undercutting defeater for the opposite sentence ¬q : t (preponderance of
evidence).

– A thoughtful agent can claim any proposition q : t for which it can construct
a defeasible proof +∂q : t (clear and convincing evidence).

– A strict agent can claim any proposition q : t for which it can construct a
definite proof +Δq : t according to its theory (beyond reasonable doubt).

Definition. Concede-attitude at time t

– A credulous agent can concede to any sentence q : t for which it has a valid
support rule r ∈ Rsup (scintilla of evidence).

– A cautious agent can concede to any proposition q : t if it is not able to pro-
vide a stronger rebuttal defeater for the opposite sentence ¬q : t (reasonable
suspicion).

– A vigilant agent can concede to any proposition q : t if it is not able to
provide a stronger rebuttal or undercutting valid defeater (preponderance of
evidence).

– A skeptical agent can concede only to those propositions q : t for which it can
construct a defeasible proof +∂q : t (clear and convincing evidence).

– A wary agent can concede to any proposition q : t for which it can construct
a definite proof +Δq : t according to its theory (beyond reasonable doubt).

During the argumentation process, a confident agent might claim any proposition
for which it is able to construct an argument (propositions which are not credible
can also be uttered). When, for example, the knowledge base of the agent consists
of the rules r1 : (0.5) : a[1, 1] ⇒ q[2, 2], and r2 : b[1, 1] → ¬q[2, 2] where a and b
are strict valid facts, then it is still presumable for the agent to claim q, even if it is
aware of the existence of the stronger counterargument r2 sustaining the opposite
consequent. A careful agent does not communicate a sentence if it is conscious
about the validity of a rebuttal defeater, no matter what certainty factor that
argument has. Similarly, a precaution agent additionally considers the validity of
an undercutter defeater in order to minimize the risk of a potential counterattack
from the other disputants. A more critical attitude is the thoughtful one, where
an agent will claim propositions for which it is able to construct an acceptable
argument, an argument which is defeasibly provable from its knowledge base.
A strict agent does not take any risk to be combated in its claims, therefore it
conveys only sentences supported by strict inference according to its defeasible
theory. The concede-attitudes are used similarly to the claim-attitudes.

202 I.A. Letia and A. Groza

4 Choosing the Proper Strategy

Various situations might be encountered. (i) The market may have substantial
authority, and the same mediation strategy is imposed to all disputants. (ii)
Consistent with party autonomy, the agents may settle on different mediation
strategies at contracting time or just prior to the arbitration. This approach
increases the flexibility and efficiency, because the agents are the ones who know
what type of mediation strategy better protects their interests7. (iii) All the
above mediator’s strategies might be used during the resolution process8.

In markets where the consumer protection is the main concern, the mediator
may provide different interfaces to the disputants. For instance, the persuasion
strategy might guarantee high level of protection to the client being irritated by
several issues. The strategies may also be correlated to the current dispute: per-
suasion strategy is connected to cases involving fairness or good faith. Similarly,
the persuasion strategy is adequate in the first stage of the dispute, the so called
evidential phase, when the factual information is collected.

On the one hand, a probabilistic approach is a good candidate when the dis-
pute process is in its early stages, when there is little information available, and
the mediator tries to figure out if the initial claim is warranted9. It also may be
considered when the information sources are not trust-able. On the other hand,
when the process reaches its maturity stage, the irrelevant facts become clear.
Therefore, within a fuzzy inference, the unimportant facts do not influence the
decision. Legal rules are often open to several interpretations because some terms
within legal texts are vague. It is the mediator who gives the appropriate inter-
pretation to terms such as reasonable or sufficient. The agent strategy depends
on the active legal doctrines within the market. If the required standard of proof
is preponderance of evidence, the probabilistic approach fits better, but when
beyond a reasonable doubt doctrine is active, the fuzzy reasoning is appropriate.

The attitude component is relevant in the context of revealing information.
Sometimes, the arguments uttered, either fact or rule, represent private infor-
mation. The agents must assign a utility cost to revealing information, as well
as a utility to winning an argument. The strategy depends on the rules of dialog
game where the agent participates. When the dialog protocol stipulates that a
claim which has been defeated by a party cannot be uttered again, then a strict
or thoughtful attitude must be considered. Opposite, a confident attitude is ade-
quate when a party wants to find information, because his opponent defeats the
claim by revealing his private arguments.
7 Mediators and arbitrators are humans who might have biases and prejudices. Fre-

quently, the disputants have the opportunity to select the arbitrator who is likely to
be sensitive to their predicament.

8 Most of the human mediators use a form of the co-mediation model. Having two
mediators can be an effective way to deal with many different ODR challenges,
fitting well to legal systems based on jury.

9 The probable cause doctrine may be invoked which requires a fair probability that a
breach took place. Courts vary when determining what constitutes a ”fair probabil-
ity,” some say 30%, others 40%, others 51%.

Structured Argumentation in a Mediator for Online Dispute Resolution 203

The relevant question concerns the validity of the semantic model. This ques-
tion requires empirical evaluations with realistic test cases10 in order to choose
the best suited defeasible pattern within a particular market. The common dis-
putes can be translated into defeasible theories11, and the agent’s decision would
be compared with the one given by the human mediator. The highest scored
strategy is provided to the disputant who might better anticipate the verdict
and the execution timing. The advantage here consists in the fact that judicial
cases that are not conforming to a pattern useful in deriving rules, are not treated
as noise and removed. Simply, they are considered exceptions and encapsulated
as defeaters or strong defeasible rules.

5 Dispute Resolution Phases

The client orders a hardware object through a shop-on-line web site (scenario
adapted from [13]). The seller has published general contractual conditions on
the web site. One of the clauses c1 stipulates that ”if the product sent is defective,
the client has the right to get it repaired or replaced, depending on the seller’s
choice”. After an order is made at t0, the seller sends the item. When the client
receives it at t7, he notices both that it does not work and its design was not
quite similar to the picture on the web site. The seller accepts that the hardware
might be defective, but invokes the mentioned clause c1. His default choice is to
repair the item, but he also proposes to replace the product if the client accepts
to pay the transport fee. The client replies that he will only pay half the fee.
The client asks an ODR system for arbitration, submitting his argumentation.
The seller asks the product to be replaced. The ODR system accepts to lead
the arbitration and notifies the seller. The seller accepts and submits his own
argumentation.

5.1 Commencement of Dispute

A dispute action is commenced by filling a complaint. If minimum of evidence
is provided12, the mediator takes into consideration the plaintiff’s claim. Con-
sequently, a judicial summon is addressed to the defendant. The probabilistic
rigorous mediator with a credulous concede attitude is appropriate for this stage.
Suppose the plaintiff believes with a certainty factor of 0.9 that the picture il-
lustrating the item was irrelevant (fact f2 in figure 6). Considering the rule r5,
such a mediator will prove the +∂replace : 7 conclusion with a certainty factor
of 0.9 ∗ 0.95 = 0.855. Because this value is greater than the threshold of 0.2, set
for this phase of the dispute, the complaint is accepted and a resolution process
starts.

10 See http://www.as.uky.edu/polisci/ulmerproject/index.html for a collection of such
legal dataset.

11 ILP techniques are available for deriving defeasible theories from legal datasets [12].
12 The claim is supported with 20% certainty factor.

204 I.A. Letia and A. Groza

5.2 Discovery

The discovery is the pre-trial phase in a lawsuit in which each disputant can
request evidence from the other party. Under the duty of disclose doctrine, the
disputants have the obligation to share their own supporting evidence without
being requested to by the other party. Failure to do so can preclude that ev-
idence from being used in trial13. Modern dispute resolution strategies try to
set the dispute in its early stages. Thus, the discovery phase is meant to clarify
what the lawsuit is about, and perhaps to make a party realize it should settle
or drop the claim, all before wasting court resources14. Because this early phase
is mainly about evidence, a probabilistic epistemic mediator is recommended.
Also, confident or careful claim attitudes prevail in obtaining information. Dur-
ing this dialog, the following facts become known: the item might be defective
(defeasible fact f1 has a certainty factor of 0.9), and the seller option is to repair
the item (f3). He advocates this through the contractual clause c1 accepted by
the buyer when the contract has been signed and representing within the de-
feasible theory by the rules r1, r2, r3, and r4. The seller proposes to repair the
product if the client accepts to pay the transport fee (the strict rule r6). The
client might agree to pay half the fee (the defeasible rule r7) in order to derive the
seller choice replace consequent. The seller response r8, which is an undercuting
defeater, explicitly defeats the derivation of the conclusion seller choice replace
based on the premise half transport fee.

5.3 Pre-trial

The pre-trial represents the last gate-keeping function before trial, answering
the question of whether the claim could even go to the arbitration phase. In
this stage, the movant can affirmatively negate the claim, whilst the plaintiff
may provide different arguments to support the claim. Therefore, a probabilistic
persuasion strategy is appropriate in this stage. Because the negation of claims
is modeled by rebuttal defeaters, the vigilant concede attitude functioning under
the reasonable suspicion doctrine is recommended. The rebuttal defeater r9 is
conveyed by the defendant who argues that usually (70% of the cases) he does not
replace items to non-premium customers. The probabilistic persuasion mediator
will derive the replace conclusion as follows. The replace consequent is supported
by the rule r5 with a certainty factor of 0.95 ∗ 0.9 = 0.855 and by the rule r2
with a certainty factor of 0.5 ∗ 0.9 = 0.45. Due to the persuasion component the
aggregated support is 1.305. In the same time, the conclusion is undecuttingly
attacked by the rule r4 with a strength of 0.6 ∗ 0.8 = 0.48. After this amount
is decreased from the initial support, the replace conclusion is sustained by
1.305−0.48 = 0.852. Because this confidence factor is stronger than the rebuttal
rules (in this case only the rule r9 supports the opposite conclusion ¬replace
only with a strength of 0.7 ∗ 1.0 = 0.7), the replace consequent will be derived.
13 This applies only to evidence that supports their own case, not anything that could

harm their case.
14 A procedural rule stipulates that parties have the right to query 25 questions to each

other in order to reveal information.

Structured Argumentation in a Mediator for Online Dispute Resolution 205

5.4 Arbitration

This phase is the presentation of the evidence gathered during earlier stages (fig-
ure 6). In the next step, the mediator decides to which jurisdiction the case be-
longs and loads the corresponding legal doctrines encapsulated as defeasible the-
ories. He uses both the hard law (enactments, i.e. rule r10) and the soft law (us-
ages, customs within the e-market, i.e rule r11) to activate the rules or to adjust
the certainty factor of the disputants’ arguments. As nested rules are allowed in
our framework the activation can be done dynamically (rule r11). For this phase,
a fuzzy rigorous mediator with a skeptical concede attitude is recommended in
order to compute the expected outcome. Consider that offer , acceptance, and
consideration accepted as strict facts, based on the rule r10, the contract is
validated with a certainty factor of 0.915. Thus, the dynamic rule is activated
with a certainty factor of min(0.9, 0.8) = 0.8 (and 0.9 ∗ 0.8 = 0.72 in case of the
probabilistic inference), resulting the rule r′5(0.8) : irrelevant picture ⇒ replace
(respectively, r”5(0.72) : irrelevant picture ⇒ replace in the probabilistic case)
which, based on the lex posteriori legal principle16, takes the place of the rule
r5 in figure 6. This mechanism provides the mediator the ability to dynamically
adjust priorities among rules17.

Users can also explore hypothetical situations when mediators have different
strategies: fuzzy, probabilistic, persuasion or epistemic. How the dispute outcome
depends on each defeasible mediator type is shown in figure 7. In order to trace

f1 : defective item(0.9)[t7, t7].
f2 : irrelevant picture(0.9)[t7, t7].
f3 : seller choice repair(0.8)[t0, t7].
f4 : ¬premium customer(1.0)[t0, t7].

r1 : (0.5)defective item[t0, t7] ⇒ repair[t0, t7]
r2 : (0.5)defective item[t0, t7] ⇒ replace[t0, t7]
r3 : (0.6)seller choice replace[t0, t7] � repair[t0, t7]
r4 : (0.6)seller choice repair[t0, t7] � replace[t0, t7]
r5 : (0.95)irrelevant picture[t0, t7] ⇒ replace[t0, t7]
r6 : transport fee[t0, t7] → seller choice replace[t0, t7]
r7 : (0.9)half transport fee[t0, t7] ⇒ seller choice replace[t0, t7]
r8 : half transport fee[t0, t7] � seller choice replace[t0, t7]
r9 : (0.7)¬premium customer[t0, t7] ⇒ ¬replace[t0, t7]
r10 : (0.9)offer[t0, t0], acceptance[t0, t0], consideration[t0, t0] ⇒ contract valid[t0, t7]
r11 : (0.8)contract valid[t0, t0] ⇒ (irrelevant picture[t0, t7] ⇒ replace[t0, t7])

Fig. 6. Sample of arguments collected during the run of a dispute

15 In order to accommodate some exceptions like ”the signer is under 18”.
16 Under the legis posterior doctrine, the most recent law or precedent case takes prece-

dence when computing the outcome.
17 Under most laws, the arbitrator can assign as much probatory force as he believes

they deserve, as long as this assessment is not arbitrary [13]. In the long run of ODR
it is necessary to create specialized jurisdiction for e-commerce cases, where the cer-
tainty factor would be fine tuned according to precedents and mediator experience.

206 I.A. Letia and A. Groza

+∂replace : t7 Persuasion Epistemic Rigorous

Probabilistic No0.45+0.64−0.6<0.7 Nomax(0.45,0.64)<max(0.6,0.7) Nomax(0.45,0.64)−0.6<0.7

Fuzzy No/Y es0.5+0.8−0.6=0.7 Y esmax(0.5,0.8)>max(0.6,0,7) Nomax(0.5,0.8)−0.6<0.7

Fig. 7. Answer for query +∂replace : t7 depends on mediator type

the results depicted here, figure 8 recalls only the relevant rules for the derivation
of the replace consequent. Here, the dynamic rule r′5 is active in a fuzzy approach,
whilst the dynamic rule r5” is the consequence of a probabilistic inference.

In the probabilistic approach (first data raw in figure 7) the claim replace
is sustained by the rules r2 with 0.5 ∗ 0.9 = 0.45 and by the rule r”5 with
0.72 ∗ 0.9 = 0.64. The same claim is undercutingly defeated by the rule r4 with
0.6 ∗ 0.8 = 0.48, and rebutally defeated by the rule r9 with 0.7 ∗ 1.0 = 0.7. In the
case of the persuasion strategy, the total support of 0.45+0.64 = 1.09 decreased
by the undercutting defeaters with 0.6 is not enough to beat the strength of the
opposite conclusion ¬replace, which is 0.7. In the case of the epistemic strategy,
the maximum support for the replace consequent max(0.45, 0.64) = 0.64 also is
not enough to overwhelms the most powerful defeater, given by max(0.6, 0.7) =
0.7. Similarly, in a rigorous approach, the most strength supporting argument
max(0.45, 0.64) = 0.64, decreased by the strength 0.6 of the undercutting de-
feater, results in a less confidence in the replace consequent compared with the
strength of 0.7 of the opposite conclusion.

In the fuzzy approach (second data raw in figure 7), the rule r′5 supports
the consequent with min(0.8, 0.9) = 0.8, whilst the rule r2 with min(0.5, 0.9).
The undercutting defeater r4 challenges the consequent with a confidence of
min(0.6, 0.8) = 0.6, while the rule r9 sustains the negated conclusion with a
certainty factor of min(0.7, 1.0) = 0.7. In the case of the persuasion strat-
egy, the aggregated support of 0.5 + 0.6 = 1.3, decreased by the strength of
the undercuting defeater 0.6 equals the confidence of the opposite conclusion
0.7. Here, in case the ambiguity propagation is enabled, the fuzzy persuasion
agent proves the consequent, whilst under a skeptical reasoning it is not in-
ferred. In the case of an epistemic mediator, the strongest supporting argument,
given by max(0.5, 0.8) = 0.8) wins in front of the strongest defeater, given by

f1 : defective item(0.9)[t7, t7].
f2 : irrelevant picture(0.9)[t7, t7].
f3 : seller choice repair(0.8)[t0, t7].
f4 : ¬premium customer(1.0)[t0, t7].

r2 : (0.5)defective item[t0, t7] ⇒ replace[t0, t7]
r4 : (0.6)seller choice repair[t0, t7] � replace[t0, t7]
r′
5 : (0.8)irrelevant picture[t0, t7] ⇒ replace[t0, t7]

r5” : (0.72)irrelevant picture[t0, t7] ⇒ replace[t0, t7]
r9 : (0.7)¬premium customer[t0, t7] ⇒ ¬replace[t0, t7]

Fig. 8. Supporting and attacking rules for the replace consequent

Structured Argumentation in a Mediator for Online Dispute Resolution 207

max(0.6, 0.7) = 0.7. If a rigorous approach is preferred, the strongest supporting
argument max(0.5, 0.8) = 0.8), decreased by the undercutting defeater with 0.6,
no longer overwhelms the support 0.7 of the ¬replace consequent. Users are also
able to have dialogs with the system to explore what would happen if some of
their claims were rejected or just partially accepted18.

5.5 Post-trial

After the arbitration is done two paths might follow: the enforcement of judg-
ment and appealing the results of the arbitration process. Appealing after the
trial may be quite difficult. To facilitate trust in e-commerce, many governs
have enacted a norm similar to the next one: ”Any item achieved in online
transaction can be returned within 15 days, without reason.”. Under these cir-
cumstances, the seller concedes to replace the defective item within 3 days if
the client requests this: r20 : request[t8, t8] → must replace item[t8, t10]. If the
client is satisfied this obligation is no longer active: r21 : satisfied[t8, t10] →
¬must change item[8, 10]. The last role of the system is to monitor contract
enactment. This is done simply by trying to prove +∂must change item : 10. If
the client asked for the replacement and within 3 days he did not get satisfaction,
the obligation still stands.

6 Related Work

The need for computerized mechanisms for decision support comes from well
known limits of human knowledge processing. One aim is to provide disputants
information about the expected outcome of the resolution process19. The other
goal is to enrich the mediator’s ability to process knowledge and weight argu-
ments. By enhancing the expertise level of the mediator we argue that such
decision support system can be looked at as a fourth party as defined in [2].

In the DiaLaw system [15], if the respondent of an argument accepts all the
premises of a valid argument, he must also accept the conclusion, in case the
respective inductive rule was previously accepted. In our framework, in the light
of new information, an undercutting defeater might be used to attack the link
between the premises and the consequent. In our view, the existence of a finite
set of pre-agreed rules is not feasible for practical applications20. Thus, both

18 For the scenario in figure 8 if the certainty factor of irrelevant picture fact is greater
than 0.8 a persuasion mediator will also infer the replace conclusion.

19 In the negotiation literature this is called BATNA: Know your best alternative to a
negotiated agreement [14].

20 By accepting a jurisdiction parties practically agree on a set of legal rules. Through
a signed contract, parties agree not only on some contractual clauses, but also re-
garding several specific doctrines under which that contract is enacted (such as ex-
pectation damages, opportunity costs, reliance damages). Due to the open character
of both legal rules and contractual clauses, there are situations when supplementary
rules have to be considered.

208 I.A. Letia and A. Groza

facts and rules may be dynamically asserted and retracted within the defeasible
framework.

In the Carneades argumentation framework [16] three kinds or premises are
used: ordinary premises, presumptions, and exceptions, where presumptions are
used to model uncertain knowledge. In our approach, the nondeterminacy in-
herent in the early stages is handled by probabilistic reasoning, whilst defeaters
deal with exceptions and information obtained during the resolution process.
The framework also deals with information about dialectical status of a sentence:
undisputed, at issue, accepted, rejected. We treated this issue elsewhere [17], by
defining defeasible commitment machines as a flexible mechanism to adapt the
life-cycle of the conveyed facts.

An ODR system was modeled within a multi-agent context by identifying and
representing the types of communication between the different actors: parties, me-
diator, arbitrator, experts, witnesses, ODR-administrator, system-administrator,
visitors [13]. Our approach does not regard the architectural requirements of an
ODR system, but rather the reasoning capabilities of the arbitrator.

Rule-based systems are suitable for modeling the logical structure of legis-
lation and are practically successful when the gap between factual and legal
language is small and the regulations are uncontroversial, but they fail to model
legal argument. Defeasible logic, through its argumentative semantics, overcomes
this drawback. It is also adequate in practical applications due to its low com-
plexity [18]. As a simulation tool, the ODR system designer may obtain results
regarding what types of strategies better suit the e-market or how information
sharing can be used to settle the dispute.

The formalization of virtual organizations and contracts based on commit-
ments [19] opens another path for ODR by enabling to capture the social struc-
ture. Changes of organizations impose some treatment for the dynamics of
enacted contracts.

7 Conclusions

There is a strong motivation for the need of ODR systems to reflect different
types of argumentation patterns, mainly those models where persuasion can be
functionally embedded into negotiation protocols [4]. From the knowledge repre-
sentation viewpoint the implemented system accommodates temporal defeasible
reasoning, nested rules, and a dynamic notion of priority over the rules21. From
the argumentative semantics viewpoint the system introduces negated rules to
model counter-examples, whilst Pollock’s style undercutting defeaters are used
to represents exceptions.

We advocate two strong points of this approach: (i) the flexibility of the frame-
work due to the different patterns of weighting arguments and to the property
of defeasible logic to model exceptions; (ii) the accordance to legal practice, by
establishing a connection between these patterns and disputes phases as they
21 A prototype based on LISA (Lisp-based Intelligent Software Agents) is available at

http://cs-gw.utcluj.ro/∼adrian/odr.html.

Structured Argumentation in a Mediator for Online Dispute Resolution 209

appear in current practice in law. This view on the ODR issue does not insist on
the temporal aspects included in the logic. They can be subject to further inves-
tigation regarding the application of the framework to contract enactment [19].
Our future work regards the enrichment of the logical framework with explana-
tion capabilities of the outcome, needed to achieve trustworthiness and practical
usability in a dispute resolution system.

Acknowledgments

We are grateful to the anonymous reviewers for useful comments. Part of this
work was supported by the grant 27702-990 from the National Research Council
of the Romanian Ministry for Education and Research.

References

1. Tyler, M.C., Bretherton, D.: Seventy-six and counting: An analysis of ODR sites.
In: Workshop on Online Dispute Resolution at the International Conference on
Artificial Intelligence and Law, Edinburgh, UK, pp. 13–28 (2003)

2. Katsh, E., Rifkin, J.: Online Dispute Resolution: Resolving Conflicts in Cyberspace.
John Wiley, Chichester (2001)

3. Lodder, A., Thiessen, E.: The role of artificial intelligence in online dispute resolu-
tion. In: Workshop on Online Dispute Resolution at the International Conference
on Artificial Intelligence and Law, Edinburgh, UK (2003)

4. Walton, D., Godden, D.: Persuasion dialogues in online dispute resolution. Artificial
Intelligence and Law 13, 273–295 (2006)

5. Rule, C., Friedberg, L.: The appropriate role of dispute resolution in building trust
online. Artificial Intelligence and Law 13, 193–205 (2006)

6. Hage, J.: Law and defeasibility. Artificial Intelligence and Law 11, 221–242 (2003)
7. Governatori, G.: Representing business contracts in RuleML. Journal of Coopera-

tive Information Systems 14 (2005)
8. Pollock, J.L.: Defeasible reasoning with variable degrees of justification. Artificial

Intelligence 133, 233–282 (2001)
9. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57, 1–42 (1992)

10. Prakken, H.: A study of accrual of arguments, with applications to evidential rea-
soning. In: 10th International Conference on Artificial Intelligence and Law, New
York, NY, USA, pp. 85–94 (2005)

11. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal
inter-agent dialogues. Journal of Logic and Computation 13, 347–376 (2003)

12. Johnston, B., Governatori, G.: An algorithm for the induction of defeasible logic
theories from databases. In: Australasian Database Conference, pp. 75–83 (2003)

13. Bonnet, V., Boudaoud, K., Gagnebin, M., Harms, J., Schultz, T.: Online dispute
resolution systems as web services. ICFAI Journal of Alternative Dispute 3, 57–74
(2004)

14. Bellucci, E., Lodder, A.R., Zeleznikow, J.: Integrating artificial intelligence, argu-
mentation and game theory to develop an online dispute resolution environment.
In: 16th International Conference on Tools with Artificial Intelligence, pp. 749–754.
IEEE Computer Society Press, Los Alamitos (2004)

210 I.A. Letia and A. Groza

15. Lodder, A.: DiaLaw: On Legal Justification and Dialogical Models of Argumenta-
tion. Kluwer, Dordrecht (1999)

16. Gordon, T., Walton, D.: The Carneades argumentation framework: Using presump-
tions and exceptions to model critical questions. In: 1st International Conference on
Computational Models of Argument, pp. 208–219. IOS Press, Amsterdam (2006)

17. Letia, I.A., Groza, A.: Running contracts with defeasible commitment. In: Ali, M.,
Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 91–100. Springer,
Heidelberg (2006)

18. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Prac-
tice of Logic Programming 1, 691–711 (2001)

19. Udupi, Y.B., Singh, M.P.: Contract enactment in virtual organizations: A
commitment-based approach. In: 21st National Conference on Artificial Intelli-
gence, pp. 722–727. AAAI, Stanford (2006)

Extending Propositional Logic with Concrete Domains
for Multi-issue Bilateral Negotiation

Azzurra Ragone1, Tommaso Di Noia1, Eugenio Di Sciascio1,
and Francesco M. Donini2

1 SisInfLab, Politecnico di Bari, Bari, Italy
{a.ragone,t.dinoia,disciascio}@poliba.it

2 Università della Tuscia , Viterbo, Italy
donini@unitus.it

Abstract. We present a novel approach to knowledge-based automated one-shot
multi-issue bilateral negotiation handling, in a homogeneous setting, both numer-
ical features and non-numerical ones. The framework makes possible to formally
represent typical situations in real e-marketplaces such as “if I spend more than
20000 e for a sedan then I want a navigator pack included” where both nu-
merical (price) and non-numerical (sedan, navigator pack) issues coexist. To this
aim we introduce P(N), a propositional logic extended with concrete domains,
which allows to: model relations among issues (both numerical and not numeri-
cal ones) via logical entailment, differently from well-known approaches that de-
scribe issues as uncorrelated; represent buyer’s request, seller’s supply and their
respective preferences as formulas endowed with a formal semantics. By model-
ing preferences as formulas it is hence possible to assign a utility value also to a
bundle of issues, which is obviously more realistic than the trivial sum of utili-
ties assigned to single elements in the bundle itself. We illustrate the theoretical
framework, the logical language, the one-shot negotiation protocol we adopt, and
show we are able to compute Pareto-efficient outcomes, using a mediator to solve
a multi-objective optimization problem.

1 Introduction

Bilateral negotiation between agents is a challenging problem, with applications in sev-
eral scenarios, each one with its own peculiarities and issues. In this work we focus on
automated negotiation in e-marketplaces [30]. In such domains we do not simply deal
with undifferentiated products (commodities as oil, cement, etc.) or stocks, where only
price, time and quantity have to be taken into account; also other features must be con-
sidered during the negotiation process. For instance, when a potential buyer browses an
e-marketplace about automobiles, she looks for a car fulfilling her needs and/or wishes.
So, not only the price is important, but also warranty or delivery time, as well as look,
model, comfort and so on. In such domains it is difficult to model the request/offer de-
scriptions, and even more difficult to find the best suitable agreement. Recently, there
has been a growing interest towards multi-issue negotiation, also motivated by the idea
that richer and expressive descriptions of demand and supply can boost e-marketplaces
[29]. However, to the best of our knowledge, and also in recent literature, issues are

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 211–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 A. Ragone et al.

usually described as uncorrelated terms, without considering any underlying semantics.
Notable exceptions are discussed in Section 8. In our approach we use knowledge rep-
resentation in two ways: (1) exploiting a logical theory to represent relations among
issues and (2) assigning utilities to formulas to represent agents having preferences
over different bundles of issues. For what concerns the former, we introduce a logical
theory that allows to represent, e.g., through logical implication, the fact that a Fer-
rari is an Italian car (Ferrari ⇒ ItalianMaker) or that an Italian car is not a
German car (ItalianMaker ⇒ ¬GermanMaker). Furthermore we can express
agent preferences over a bundle of issues, e.g., the buyer can state she would like to
have a car with navigator pack, where the meaning of navigator pack is in the formula
(NavigatorPack ⇔ SatelliteAlarm∧ GPS system). In this case, the utility
assigned to a bundle is obviously not necessarily the sum of utilities assigned to single
elements in the bundle itself. Moreover issues are often inter-dependent: the selection
of one issue depends on the selection made for other issues: in our framework agents
can express conditional preferences as I would like a car with leather seats if its color
is black (ExternalColorBlack ⇒ Leather seats). We propose an extended
propositional logic, P(N) enriched with concrete domains, which allows—as it is in
the real world—to take into account preferences involving both numerical features and
non-numerical ones, e.g., the seller can state that if you want a car with a GPS sys-
tem you have to wait at least one month: (GPS system ⇒ deliverytime ≥ 31)
as well as preferences can involve only numerical ones: e.g., the buyer can state that
she can accept to pay more than 25000e only if there is a warranty lasting more than
two years (price > 25000 ⇒ year warranty > 2). Contributions of this paper
include:

1. the framework for automated multi-issue bilateral negotiation,
2. the logical language to represent existing relations between issues and preferences

as formulas, which is able to handle both numerical features and non-numerical
ones as correlated issues w.r.t. a logical theory, and

3. the one-shot protocol we adopt, which allows to compute Pareto-efficient agree-
ments, exploiting a mediator that solves a multi objective optimization problem.

The rest of the paper is structured as follows: next section discusses the scenario and
the assumptions we make; then we illustrate the modeling of issues through our logical
language and the negotiation mechanism. Section 4 presents the multi-issue bilateral ne-
gotiation problem, Section 5 describes the computation of utilities for numerical fetures.
Section 6 shows how to compute Pareto-efficient agreements and Section 7 summarizes
the bargaining process. Related work and discussion close the paper.

2 Negotiation Scenario

We start by introducing the negotiation mechanism and the assumptions characterizing
our framework. According to Rosenschein and Zlotkin [25], we define the Space of pos-
sible deals, the Negotiation Protocol and the Negotiation Strategy. For what concerns

Extending Propositional Logic with Concrete Domains 213

the Space of possible deals, since we solve a multi-objective optimization problem,
possible deals are all the solutions of the problem that satisfy the constraints, even if
they do not maximize the objective function (the so called feasible region [11]). The
Negotiation Protocol we adopt is one-shot, with the presence of a mediator. Differently
from the classical Single-shot bargaining [23], where one player proposes a deal and
the other player may only accept or refuse it [2], in our framework we hypothesize
the presence of an electronic mediator, that may automatically explore the negotiation
space and discover Pareto-efficient agreements to be proposed to both parties. Such
parties may then accept or refuse agreements. We recall that two basically different
approaches to automated negotiation exist: centralized and distributed. In the former,
agents elicit their preferences and then a mediator, or some central entity, selects the
most suitable deal based on them. In the latter, agents negotiate through various negoti-
ation steps reaching the final deal by means of intermediate deals, without any external
help [5]. Distributed approaches do not allow for the presence of a mediator [14, p.25]
because agents cannot agree on any entity, so they do not want to disclose their prefer-
ences to a third party, that, missing any relevant information, could not help agents. In
dynamic system a predefined conflict resolution cannot be allowed, so the presence of a
mediator is discouraged. On the other hand the presence of a mediator can be extremely
useful in designing negotiation mechanisms and in practical important commerce set-
tings. According to MacKie-Mason and Wellman [17], negotiation mechanisms often
involve the presence of a mediator1, which collects information from bargainers and
proposes an efficient negotiation outcome. In Section 8 some approaches adopting a
centralized approach are described. Although the main target of an agent is reaching a
satisfying agreement, this objective alone may not be enough to satisfy the agent, since
this agreement should also be Pareto-efficient. It is fundamental to assess how hard is
to find Pareto-efficient agreements and check whether a given agreement is also Pareto-
efficient. The presence of a trusted third party can help parties to reach a Pareto-efficient
agreement. As pointed out by Raiffa et al. [24, p.311], usually bargainers may not want
to disclose their preferences or utilities to the other party, yet they can be more willing to
reveal these information to a trusted – automated – mediator, helping negotiating parties
to achieve efficient and equitable outcomes. The presence of a mediator and the one-
shot protocol is an incentive for the two parties to reveal the true preferences, because
they can trust in the mediator and they have a single possibility to reach the agreement
with that counterpart. Therefore in our framework we propose a one-shot protocol with
the intervention of a mediator with a proactive behavior: it suggests to each participant
a fair Pareto-efficient agreement. For what concerns strategy, the players reveal their
preferences to the mediator and then, once it has computed a solution, they can accept
or refuse the agreement proposed to them; they refuse if they think possible to reach a
better agreement looking for another partner, or another shot, or for a different set of
bidding rules. Notice that here we do not consider the influence of the outside options
in the negotiation strategy [18].

1 The most well-known—and running—example of mediator is eBay, where a mediator receives
and validates bids, shows the current highest bid and finally determines the auction winner
[17]. Observe also that eBay retains private information of actors, such as selling reservation
values.

214 A. Ragone et al.

3 Representation of Issues

We divide issues involved in a negotiation in two categories. Some issues may express
properties that are true or false, like, e.g., in an automotive domain, ItalianMaker,
or AlarmSystem. We represent them as propositional atoms A1, A2, . . . from a fi-
nite set A. Other issues involve numerical features like deliverytime, or price.
We represent them as variables f1, f2, . . ., each one taking values in its specific do-
main Df1 , Df2 , . . ., such as [0, 90] (days) for deliverytime, or [1, 000, 20,000] (eu-
ros), for price. The variables representing numerical features are always constrained
by comparing them to some constant, like price < 20,000, or deliverytime ≥
30, and such constraints can be combined into complex propositional requirements –
also involving propositional issues – e.g., ItalianMaker ∧ (price ≤ 25,000) ∧
(deliverytime < 30) (representing a car made in Italy, costing no more than 25,000
euros, delivered in less than 30 days), or AlarmSystem⇒ (deliverytime > 30)
(expressing the seller’s requirement “if you want an alarm system mounted you’ll have
to wait more than one month”). We now give precise definitions for the above intu-
itions, borrowing from a previous formalization of so-called concrete domains [1] from
Knowledge Representation languages.

Definition 1 (Concrete Domains, [1]). A concrete domain D consists of a finite set
Δc(D) of numerical values, and a set of predicates C(D) expressing numerical con-
straints on D.

For our numerical features, predicates will always be the binary operators C(D) =
{≥, ≤, >, <, =, �=}, whose second argument is a constant in Δc(D)2. We note that in
some scenarios other concrete domains could be possible, e.g., colors as RGB vectors
in an agricultural market, when looking for or selling fruits.

Once we have defined a concrete domain and constraints, we can formally extend
propositional logic in order to handle numerical features. We call this language P(N).

Definition 2 (The language P(N)). Let A be a set of propositional atoms, and F a
set of pairs 〈f, Df 〉 each made of a feature name and an associated concrete domain
Df , and let k be a value in Df . Then the following formulas are in P(N):

1. every atom A ∈ A is a formula in P(N)
2. if 〈f, Df 〉 ∈ F , k ∈ Df , and ◦ ∈ {≥, ≤, >, <, =, �=} then (f ◦ k) is a formula in

P(N)
3. if ψ and ϕ are formulas in P(N) then ¬ψ, ψ ∧ ϕ are formulas in P(N). We also

use ψ ∨ ϕ as an abbreviation for ¬(¬ψ ∧ ¬ϕ), ψ ⇒ ϕ as an abbreviation for
¬ψ ∨ ϕ, and ψ ⇔ ϕ as an abbreviation for (ψ ⇒ ϕ) ∧ (ϕ ⇒ ψ).

In order to define a formal semantics of P(N) formulas, we consider interpretation
functions I that map propositional atoms into {true, false}, feature names into values
in their domain, and assign propositional values to numerical constraints and composite
formulas according to the intended semantics.

2 So, strictly speaking, C(D) would be a set of unary predicates with an infix notation, e.g.,
x > 5 is in fact a predicate P>5(x) which is true for all values of Dx greater than 5 and
false otherwise; however, this distinction is not necessary in our formalization.

Extending Propositional Logic with Concrete Domains 215

Definition 3 (Interpretation and models). An interpretation I for P(N) is a function
(denoted as a superscript ·I on its argument) that maps each atom in A into a truth
value AI ∈ {true, false}, each feature name f into a value fI ∈ Df , and assigns truth
values to formulas as follows:

– (f ◦ k)I = true iff fI ◦ k is true in Df , (f ◦ k)I = false otherwise
– (¬ψ)I = true iff ψI = false, (ψ ∧ ϕ)I = true iff both ψI = true and ϕI = true,

etc., according to truth tables for propositional connectives.

Given a formula ϕ in P(N), we denote with I |= ϕ the fact that I assigns true to ϕ. If
I |= ϕ we say I is a model for ϕ, and I is a model for a set of formulas when it is a
model for each formula.

Clearly, an interpretation I is completely defined by the values it assigns to proposi-
tional atoms and numerical features.

Example 1. Let A = {Sedan,GPL} be a set of propositional atoms, Dprice =
{0, . . . , 60000} and Dyear warranty = {0, 1, . . . , 5} be two concrete domains for
the features price, year warranty, respectively. A model I for both formulas:

{
Sedan ∧ (GPL ⇒ (year warranty ≥ 1)),
(price ≤ 5,000)

}

is SedanI = true, GPLI = false, year warrantyI = 0, priceI = 4,500.

Given a set of formulas T in P(N) (representing an ontology), we denote model for T
as I |= T . An ontology is satisfiable if it has a model. T logically implies a formula ϕ,
denoted by T |= ϕ iff ϕ is true in all models of T . We denote with MT = {I1, . . . ,In},
the set of all models for T , and omit the subscript when no confusion arises.

We assume the following restrictions for the concrete domains of our e-marketplace-
oriented scenarios:
1. domains are discrete, with a uniform discretization step εf . If the seller states he

cannot deliver a car before one month, he is saying that the delivery time will be at
least in one month and one day (deliverytime ≥ 32), where εd = 1 (in days).

2. domains are finite; we denote with max(Df) and min(Df) the maximum and min-
imum values of each domain Df .

3. even for the same feature name, concrete domains are marketplace dependent. Let
us consider price in two different marketplace scenarios: pizzas and cars. For the
former one, the discretization step εp is the e-cent: the price is usually something
like 4.50 or 6.00 e. On the other hand, specifying the price of a car we usually have
10,500 or 15,000 e; then the discretization step in this case can be fixed as 100 e.

The above Point 1 and the propositional composition of numerical constraints imply
that the operators {≥, ≤, >, <, =, �=} can be reduced only to ≥, ≤.

Definition 4 (successor/predecessor). Given two contiguous elements ki and ki+1 in
a concrete domain D we denote by:

– s : D → D the successor function: s(ki) = ki+1 = ki + εf

– p : D → D the predecessor function: p(ki+1) = ki = ki+1 − εf

216 A. Ragone et al.

Clearly, max(Df) has no successor and min(Df) has no predecessor. Based on the
above introduced notions, we can reduce Cm(D) to {≤, ≥} using the following trans-
formations:

f = k −→ (f ≤ k) ∧ (f ≥ k) (1)

f �= k −→ (f < k) ∨ (f > k) (2)

f > k −→ f ≥ (k + εf) −→ f ≥ s(k) (3)

f < k −→ f ≤ (k − εf) −→ f ≤ p(k) (4)

4 Multi Issue Bilateral Negotiation in P(N)

Following [21], we use logic formulas in P(N) to model the buyer’s demand and the
seller’s supply. Relations among issues, both propositional and numerical, are repre-
sented by a set T – for Theory – of P(N) formulas.

In a typical bilateral negotiation scenario, the issues within both the buyer’s request
and the seller’s offer can be split into strict requirements and preferences. Strict re-
quirements represent what the buyer and the seller want to be necessarily satisfied in
order to accept the final agreement – in our framework we call strict requirements de-
mand/supply. Preferences denote issues they are willing to negotiate on – this is what
we call preferences.

Example 1. Suppose to have a buyer’s request like “I would like a sedan with leather
seats. Preferably I would like to pay less than 12,000 e furthermore I’m willing to
pay up to 15,000 e if warranty is greater or equal than 3 years. (I don’t want to pay
more than 17,000 e and I don’t want a car with a warranty less than 2 years)”. In this
example we identify:

demand: I want a sedan with leather seats. I don’t want to pay more than 17,000 e. I
don’t want a car with a warranty less than 2 years
preferences: Preferably I would like to pay less than 12,000 , furthermore I’m willing
to pay up to 15,000 e if warranty is greater or equal than 3 years.

Definition 5 (Demand, Supply, Agreement). Given an ontology T represented as a
set of formulas in P(N) representing the knowledge on a marketplace domain

– a buyer’s demand is a formula β (for Buyer) in P(N) such that T ∪ {β} is satisfi-
able.

– a seller’s supply is a formula σ (for Seller) in P(N) such that T ∪{σ} is satisfiable.
– I is a possible deal between β and σ iff I |= T ∪ {σ, β}, that is, I is a model for

T , σ, and β. We also call I an agreement.

The seller and the buyer model in σ and β the minimal requirements they accept for
the negotiation. On the other hand, if seller and buyer have set strict attributes that are
in conflict with each other, that is MT ∪{σ,β} = ∅, the negotiation ends immediately
because, it is impossible to reach an agreement. If the participants are willing to avoid
the conflict deal [25], and continue the negotiation, it will be necessary they revise their
strict requirements.

Extending Propositional Logic with Concrete Domains 217

In the negotiation process both the buyer and the seller express some preferences
on attributes, or their combination. The utility function is usually defined based on
these preferences. We start defining buyer’s and seller’s preferences and their associated
utilities: uβ for the buyer, and uσ for the seller.

Definition 6 (Preferences). The buyer’s negotiation preferences B .= {β1, . . . ,βk} are
a set of formulas in P(N), each of them representing the subject of a buyer’s preference,
and a utility function uβ : B → �+ assigning a utility to each formula, such that∑

i uβ(βi) = 1.
Analogously, the seller’s negotiation preferences S .= {σ1, . . . ,σh} are a set of for-

mulas in P(N), each of them representing the subject of a seller’s preference, and a util-
ity function uσ : S → �+ assigning a utility to each formula, such that

∑
j uσ(σj) = 1.

Buyer’s request in Example 1 is then formalized as:

β = Sedan ∧ Leather seats ∧ (price ≤ 17, 000) ∧
(year warranty ≥ 2)

β1 = (price ≤ 12, 000)
β2 = (year warranty ≥ 3) ∧ (price ≤ 15, 000)

As usual, both agents’ utilities are normalized to 1 to eliminate outliers, and make them
comparable. Since we assumed that utilities are additive, the preference utility is just a
sum of the utilities of preferences satisfied in the agreement.

Definition 7 (Preference Utilities). Let B and S be respectively the buyer’s and seller’s
preferences, and MT ∪{α,β} be their agreements set. The preference utility of an agree-
ment I ∈ MT ∪{α,β} for a buyer and a seller, respectively, are defined as:

uβ,P(N)(I) .= Σ{uβ(βi) | I |= βi}
uσ,P(N)(I) .= Σ{uσ(σj) | I |= σj}

where Σ{. . .} stands for the sum of all elements in the set.

Notice that if one agent e.g., the buyer, does not specify soft preferences, but only strict
requirements, it is as β1 = � and uβ,P(N)(I) = 1, which reflects the fact that an agent
accepts whatever agreement not in conflict with its strict requirements. From the for-
mulas related to Example 1, we note that while considering numerical features, it is still
possible to express strict requirements and preferences on them. A strict requirement
is surely the reservation value [24]. In Example 1 the buyer expresses two reservation
values, one on price “more than 17,000 e” and the other on warranty “less than 2
years”.

Both buyer and seller have their own reservation values on each feature involved in
the negotiation process. It is the maximum (or minimum) value in the range of possi-
ble feature values to reach an agreement, e.g., the maximum price the buyer wants to
pay for a car or the minimum warranty required, as well as, from the seller’s perspec-
tive the minimum price he will accept to sell the car or the minimum delivery time.
Usually, each participant knows its own reservation value and ignores the opponent’s

218 A. Ragone et al.

one. Referring to price and the two corresponding reservation values rβ,price and
rσ,price for the buyer and the seller respectively, if the buyer expresses price ≤
rβ,price and the seller price ≥ rσ,price, in case rσ,price ≤ rβ,price we
have [rσ,price, rβ,price] as a Zone Of Possible Agreement — ZOPA(price),
otherwise no agreement is possible [24]. More formally, given an agreement I and a
feature f , fI ∈ ZOPA(f) must hold.

Keeping the price example, let us suppose that the maximum price the buyer is will-
ing to pay is 15,000, while the seller minimum allowable price is 10,000, then we can
set the two reservation values: rβ,price = 15,000 and rσ,price = 10,000, so the
agreement price will be in the interval ZOPA(price) = [10000, 15000].

Obviously, the reservation value is considered as private information and will not
be revealed to the other party, but will be taken into account by the mediator when the
agreement will be computed. Since setting a reservation value on a numerical feature
is equivalent to set a strict requirement, then, once the buyer and the seller express
their strict requirements, reservation values constraints have to be added to them (see
Example 1).

In order to formally define a Multi-issue Bilateral Negotiation problem in P(N),
the only other elements we still need to introduce are the disagreement thresholds, also
called disagreement payoffs, tβ , tσ. They are the minimum utility that each agent re-
quires to pursue a deal. Minimum utilities may incorporate an agent’s attitude toward
concluding the transaction, but also overhead costs involved in the transaction itself,
e.g., fixed taxes.

Definition 8 (MBN-P(N)). Given a P(N) set of axioms T , a demand β and a set
of buyer’s preferences B with utility function uβ,P(N) and a disagreement threshold
tβ , a supply σ and a set of seller’s preferences S with utility function uσ,P(N) and
a disagreement threshold tσ , a Multi-issue Bilateral Negotiation problem (MBN) is
finding a model I (agreement) such that all the following conditions hold:

I |= T ∪ {σ, β} (5)

uβ,P(N)(I) ≥ tβ (6)

uσ,P(N)(I) ≥ tσ (7)

Observe that not every agreement I is a solution of an MBN, if either uσ(I) < tσ
or uβ(I) < tβ . Such an agreement represents a deal which, although satisfying strict
requirements, is not worth the transaction effort. Also notice that, since reservation
values on numerical features are modeled in β and σ as strict requirements, for each
feature f , the condition fI ∈ ZOPA(f) always holds by condition (5).

5 Utilities for Numerical Features

Buyer’s/seller’s preferences are used to evaluate how good is a possible agreement and
to select the best one. On the other hand, also preferences on numerical features have
to be considered, in order to evaluate agreements and how good an agreement is w.r.t.
another one. Let us explain the idea considering the demand and buyer’s preferences in
Example 1.

Extending Propositional Logic with Concrete Domains 219

Example 2. Referring to β, β1 and β2 in Example 1 let us suppose to have the offer 3:

σ = Sedan ∧ (price ≥ 15, 000) ∧ (year warranty ≤ 5)

Three possible agreements between the buyer and the seller are, among others:

I1 : {SedanI1 = true,Leather seatsI1 = true,

priceI1 = 17, 000, year warrantyI1 = 3}
I2 : {SedanI2 = true,Leather seatsI2 = true,

priceI2 = 16, 000, year warrantyI2 = 4}
I3 : {SedanI3 = true,Leather seatsI3 = true,

priceI3 = 15, 000, year warrantyI3 = 5}

Looking at the values of numerical features, I1 is the best agreement from the seller’s
perspective whilst I3 is the best from the buyer’s one. In fact, the buyer the less he pays,
the happier he is and the contrary holds for the seller! The contrary is for the warranty:
the buyer is happier if he gets a greater year warranty. On the other hand, I2 is a good
compromise between buyer’s and seller’s requirements.

The above example highlights the need for utility functions taking into account the
value of each numerical feature involved in the negotiation process. Of course, for each
feature two utility functions are needed; one for the buyer — uβ,f , the other for the
seller — uσ,f . These functions have to satisfy at least the basic properties enumerated
below. For the sake of conciseness, we write uf when the same property holds both for
uβ,f and uσ,f . :

1. Since uf is a utility function, it is normalized to [0 . . . , 1]. Given the pair 〈f, Df 〉,
it must be defined over the domain Df .

2. From Example 2 we note the buyer is happier as the price decreases whilst the seller
is sadder. Hence, uf has to be monotonic and whenever uβ,f increases then uσ,f

decreases and vice versa.
3. There is no utility for the buyer if the agreed value on price is greater or equal

than its reservation value rβ,price =17,000 and there is no utility for the seller if
the price is less than or equal to rσ,price =15,000. Since concrete domains are
finite, for the buyer the best possible price is min(Dprice) whilst for the seller is
max(Dprice). The contrary holds if we refer to year warranty.

Definition 9 (Feature Utilities). Let 〈f, Df 〉 be a pair made of a feature name f and
a concrete domain Df and rf be a reservation value for f . A feature utility function
uf : Df → [0 . . . , 1] is a monotonic function such that
– if uf monotonically increases then (see Figure 1)

{
uf(v) = 0, v ∈ [min(Df), rf]
uf(max(Df)) = 1 (8)

3 For illustrative purpose, in this example we consider an offer where only strict requirements are
explicitly stated. Of course, in the most general case also the seller can express his preferences.

220 A. Ragone et al.

– if uf monotonically decreases then

{
uf(v) = 0, v ∈ [rf , max(Df)]
uf(min(Df)) = 1 (9)

Given a buyer and a seller, if uβ,f increases then uσ,f decreases and vice versa.

Clearly, the simplest utility functions are the two linear functions:

uf (v) =

⎧
⎨

⎩

1 − v−min(Df)
rf−min(Df) , v ∈ [min(Df), rf [

0 , v ∈ [rf , max(Df)]
(10)

if it monotonically decreases and

uf (v) =

⎧
⎨

⎩

1 − v−max(Df)
rf−max(Df) , v ∈ [rf , max(Df)[

0 , v ∈ [min(Df), rf]
(11)

if it monotonically increases (see Figure 1).

Fig. 1. Linear utility functions

6 Computing Pareto Agreements in P(N)

Among all possible agreements that we can compute, given a theory T as constraint, we
are interested in agreements that are Pareto-efficient and fair for both the participants,
in order to make them equally, and as much as possible, satisfied. We now outline how
an actual solution can be found solving a multi objective optimization problem.

First of all, let {B1, . . . ,Bk, S1, . . . ,Sh} be k + h new propositional atoms, and let
T ′ = T ∪{Bi ⇔ βi|i = 1, . . . , k}∪{Sj ⇔ σj |j = 1, . . . , h} – that is, every preference
in B ∪ S is equivalent to a new atom in T ′.

Extending Propositional Logic with Concrete Domains 221

6.1 Objective Functions

Here we define functions to be maximized to find a solution to a multi objective op-
timization problem. In order to formulate functions to be maximized involving prefer-
ences expressed as formulas in P(N), let {b1, . . . ,bk} the (0,1)-variables one-one with
{B1, . . . ,Bk} and similarly {s1, . . . ,sh} for {S1, . . . ,Sh}. The functions representing
respectively buyer’s and seller’s utility over preferences can hence be defined as:

uβ,P(N) =
k∑

i=1

biuβ(βi) (12)

uσ,P(N) =
h∑

j=1

sjuσ(σj) (13)

As highlighted in Section 5, also utilities over numerical features have to be taken into
account while finding the best solution for both the buyer and the seller. Hence, for each
feature ft involved in the negotiation process we have a feature utility function for the
buyer uβ,ft and one for the seller uσ,ft . For instance, if we consider price and the
linear function in equations (10) and (11) we likely will have:

uβ,price(v) =

⎧
⎨

⎩

1 −
v−max(Dprice)

r
β,price−max(Dprice)

0

uσ,price(v) =

⎧
⎨

⎩

1 −
v−min(Dprice)

r
σ,price−min(Dprice)

0

6.2 The Multi Objective Optimization Problem

Given the objective functions to be optimized – the feature utility functions and the
preference utility functions – in order to compute a Pareto agreement we reduce to a
multi objective optimization problem (MOP). The functions to be optimized are utility
functions both for the buyer and the seller, as we want them equally satisfied.

In addition to the set of functions to maximize (or minimize), in a MOP there are
a set of constrained numerical variables. In our setting, we have three different sets of
constraints:

1. the (modified) ontology T ′ —see the beginning of Section 6
2. strict requirements β and σ, including reservation values over numerical features
3. conditions (6) and (7) of an MBN on disagreement thresholds tβ and tσ — see the

definition of MBN-P(N) at the end of Section 4

Notice that the ones involving disagreements thresholds are already linear constraints.
In order to model as linear constraints also the ones described in points 1 and 2 of the
above enumeration, proceed as follows.

222 A. Ragone et al.

Clause reduction. Obtain a set of clauses T ′′ s.t. each clause contains only one sin-
gle numerical constraint and T ′′ is satisfiable iff T ′ ∪ {σ, β} does. In order to have
such clauses, if after using standard transformations in clausal form [16] you find a
clause with two numerical constraints χ : A ∨ . . . (fi ◦i ki) ∨ (fj ◦j kj) pick up a new
propositional atom A and replace χ with the set of two clauses4

{
χ1 : A ∨ A ∨ . . . ∨ (fi ◦i ki),
χ2 : ¬A ∨ A ∨ . . . ∨ (fj ◦j kj)

}

As a final step, for each clause, replace ¬(f ≤ k) with (f ≥ s(k)) and ¬(f ≥ k) with
(f ≤ p(k)) (see (3) and 4).

Example 3. Suppose to have the clause

χ : ItalianMaker∨ ¬AirConditioning∨
(year warranty ≥ 3) ∨ ¬(price ≥ 20, 500)

First of all split the clause in the following two

χ1 : A ∨ ItalianMaker∨ ¬AirConditioning∨
(year warranty ≥ 3)

χ2 : ¬A ∨ ItalianMaker∨ ¬AirConditioning∨
¬(price ≥ 20, 500)

then change the second one in

χ2 : ¬A ∨ ItalianMaker∨ ¬AirConditioning∨
(price ≤ 20, 000)

Here we consider ε = 500 for the concrete domain Dprice.

Encoding clauses into linear inequalities. Use a modified version of well-known
encoding of clauses into linear inequalities (e.g., [19, p.314]) so that every solution of
the inequalities identifies a model of T ′′. If we identify true with values in [1 . . .∞] and
false with values in [0 . . . 1[each clause can be rewritten in a corresponding inequality.

– map each propositional atom A occurring in a clause χ with a (0,1)-variable a. If A
occurs negated in χ then substitute ¬A with (1−a), otherwise substitute A with a.

– replace (f ≤ k) with 1
max(Df)−k (max(Df) − f) and (f ≥ k) with 1

kf .

After this rewriting it is easy to see that, considering ∨ – logical or – as classical addi-
tion, in order to have a clause true the evaluation of the corresponding expression must
be a value grater or equal to 1.

Example 4. If we consider max(Dprice) = 60, 000, continuing Example 3 we have
from χ1 and χ2 the following inequalities respectively:

a + i + (1 − a) +
1

3
year warranty ≥ 1

(1 − a) + i + (1 − a) +
1

60, 000 − 20, 000
(60, 000 − price) ≥ 1

4 It is well know that such a transformation preserves logical entailment [27].

Extending Propositional Logic with Concrete Domains 223

where a, i, a are (0,1)-variables representing propositional terms A, ItalianMaker
and AirConditioning.

Looking at the example below, it should be clear the reason why only one numerical
constraint is admitted in a clause.

Example 5. Let us transform the following clause without splitting in the two corre-
sponding ones

χ : ItalianMaker∨ (year warranty ≥ 3) ∨ (price ≤ 20, 000)

the corresponding inequality is then

i +
1

3
year warranty+

1

60, 000 − 20, 000
(60, 000 − price) ≥ 1

The interpretation {year warranty = 2,price = 19, 500} is not a model for χ
while the inequality is satisfied.

7 The Bargaining Process

Summing up, the negotiation process covers the following steps:

Preliminary Phase. The buyer defines strict β and preferences B with corresponding
utilities uβ(βi) , as well as the threshold tβ , and similarly the seller σ, S, uσ(σj) and tσ .
Here we are not interested in how to compute tβ ,tσ,uβ(βi) and uσ(σj); we assume they
are determined in advance by means of either direct assignment methods (Ordering,
Simple Assessing or Ratio Comparison) or pairwise comparison methods (like AHP
and Geometric Mean) [20]. Both agents inform the mediator about these specifications
and the theory T they refer to. Notice that for each feature involved in the negotiation
process, both in β and σ their respective reservation values are set either in the form
f ≤ rf or in the form f ≥ rf .

Negotiation-Core phase. For each βi ∈ B the mediator picks up a new propositional
atom Bi and adds the axiom B1 ⇔ βi to T , similarly for S. Then, it transforms all the
constraints modeled in β, σ and (just extended) T in the corresponding linear inequali-
ties following the procedures illustrated in Section 6.2 and Section 6.2. Given the pref-
erence utility functions uβ,P(N) =

∑k
i=1 biuβ(βi) and uσ,P(N) =

∑h
j=1 sjuσ(σj),

the mediator adds to this set of constraints the ones involving disagreement thresholds
uβ,P(N) ≥ tβ and uσ,P(N) ≥ tσ.

With respect to the above set of constraints, the mediator solves a MOP maximizing
the preference utility functions uβ,P(N), uσ,P(N) and for each feature f involved in
the negotiation process also the feature utility functions uβ,f and uσ,f . The returned
solution to the MOP is the agreement proposed to the buyer and the seller. Notice that
a solution to a MOP is always Pareto optimal [11], furthermore the solution proposed
by the mediator is also a fair solution, because among all the Pareto-optimal solutions
we take the one maximizing the utilities of both the buyer and the seller (see Sec. 6.1).
From this point on, it is a take-it-or-leave-it offer, as the participants can either accept
or reject the proposed agreement [12]. Let us present a tiny example in order to better
clarify the approach. Given the toy ontology in P(N),

224 A. Ragone et al.

T =

⎧
⎨

⎩

ExternalColorBlack ⇒ ¬ExternalColorGray
SatelliteAlarm ⇒ AlarmSystem
NavigatorPack ⇔ SatelliteAlarm∧ GPS system

the buyer and the seller specify their strict requirements and preferences:

β = Sedan∧ (price ≤ 30,000) ∧ (km warranty ≥ 120,000) ∧ (year warranty ≥ 4)
β1 = GPS system ∧ AlarmSystem
β2 = ExternalColorBlack ⇒ Leather seats
β3 = (km warranty ≥ 140,000)
uβ(β1) = 0.5
uβ(β2) = 0.2
uβ(β3) = 0.3
tβ =0.2

σ = Sedan∧ (price ≥ 20,000) ∧ (km warranty ≤ 160,000) ∧ (year warranty ≤ 6)
σ1 = GPS system ⇒ (price ≥ 28,000)
σ2 = (km warranty ≤ 150,000) ∨ (year warranty ≤ 5)
σ3 = ExternalColorGray
σ4 = NavigatorPack
uσ(σ1) = 0.2
uσ(σ2) = 0.4
uσ(σ3) = 0.2
uσ(σ4) = 0.2
tσ =0.2

Then the final agreement is:

I : {SedanI = true,ExternalColorGrayI = true,

SatelliteAlarmI = true,GPS systemI = true,

NavigatorPackI = true,AlarmSystemI = true,

priceI = 28, 000, kI = 160, 000, year warrantyI = 5}

Here, for the sake of conciseness, we omit propositional atoms interpreted as false.

8 Related Work and Discussion

Automated bilateral negotiation among agents has been widely investigated, both in ar-
tificial intelligence and in microeconomics research communities, so this section is nec-
essarily far from complete. Several definitions have been proposed in the literature for
bilateral negotiation. Rubinstein [26] defined the Bargaining Problem as the situation
in which ”two individuals have before them several possible contractual agreements.
Both have interests in reaching agreement but their interests are not entirely identical.
What ’will be’ the agreed contract, assuming that both parties behave rationally?” In
game theory, the bargaining problem has been modeled either as cooperative or non-
cooperative games [10]. AI-oriented research has been more focused on automated
negotiation among agents and on designing high-level protocols for agent interaction
[15]. Agents can play different roles: act on behalf of buyer or seller, but also play the
role of a mediator or facilitator. Approaches exploiting a mediator include among others

Extending Propositional Logic with Concrete Domains 225

[8,13,9]. In [8] an extended alternating offers protocol was presented, with the presence
of a mediator, which improves the utility of both agents. In [13] a mediated-negotiation
approach was proposed for complex contracts, where inter dependency among issues
is investigated. In [3] the use of propositional logic in multi-issue negotiation was in-
vestigated, while in [4] weighted propositional formulas in preference modeling were
considered. However, in such papers, no semantic relation among issues is taken into
account. In our approach we adopt a logical theory, i.e., an ontology, which allows e.g.,
to catch inconsistencies between demand and supply or find out a feasible agreement
in a bundle, which is fundamental to model an e-marketplace. Self-interested agents
negotiating over a set of resources to obtain an optimal allocation of such resources
have been studied in [7,6,5]. Endriss et al. [7] propose an optimal resource allocation in
two different negotiation scenarios: one, with money transfer, determines an allocation
with maximal social welfare; the second is a money-free framework, which results in a
Pareto outcome. In [5] agents negotiate over small bundles of resources, and a mech-
anism of resource allocation is investigated, which maximizes the social welfare by
means of a sequence of deals involving at most k items each. Both papers [7,5] extend
the framework proposed in [28], which focused on negotiation for (re)allocating tasks
among agents. We borrow from [31] the definition of agreement as a model for a set of
formulas from both agents. However, in [31] only multiple-rounds protocols are stud-
ied, and the approach leaves the burden to reach an agreement to the agents themselves,
although they can follow a protocol. The approach does not take preferences into ac-
count, so that it is not possible to guarantee the reached agreement is Pareto-efficient.
Our approach, instead, aims at giving an automated support to negotiating agents to
reach, in one shot, Pareto agreements. The work presented here builds on [22], where a
basic propositional logic framework endowed of a logical theory was proposed. In [21]
the approach was extended and generalized and complexity issues were discussed. In
this paper we further extended the framework, introducing the extended logic P(N),
thus handling numerical features, and showed we are able to compute Pareto-efficient
agreements, solving a multi objective optimization problem adopting a one-shot nego-
tiation protocol.

References

1. Baader, F., Hanschke, P.: A schema for integrating concrete domains into concept languages.
In: Proc. of IJCAI 1991, pp. 452–457 (1991)

2. Binmore, K.: Fun and Games. A Text on Game Theory. D.C. Heath and Company (1992)
3. Bouveret, S., Lemaitre, M., Fargier, H., Lang, J.: Allocation of indivisible goods: a general

model and some complexity results. In: Proc. of AAMAS 2005, pp. 1309–1310 (2005)
4. Chevaleyre, Y., Endriss, U., Lang, J.: Expressive power of weighted propositional formulas

for cardinal preference modeling. In: Proc. of KR 2006, pp. 145–152 (2006)
5. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles of re-

sources. In: Proc. of AAMAS 2005, pp. 296–302 (2005)
6. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotiation. Artif.

Intell. 164(1-2), 23–46 (2005)
7. Endriss, U., Maudet, N., Sadri, F., Toni, F.: On optimal outcomes of negotiations over re-

sources. In: Proc. of AAMAS 2003, pp. 177–184 (2003)

226 A. Ragone et al.

8. Fatima, S., Wooldridge, M., Jennings, N.R.: Optimal agendas for multi-issue negotiation. In:
Proc. of AAMAS 2003, pp. 129–136 (2003)

9. Gatti, N., Amigoni, F.: A decentralized bargaining protocol on dependent continuous multi-
issue for approximate pareto optimal outcomes. In: Proc. of AAMAS 2005, pp. 1213–1214
(2005)

10. Gerding, E.H., van Bragt, D.D.B., La Poutre, J.A.: Scientific approaches and techniques for
negotiation: a game theoretic and artificial intelligence perspective. Technical report, SEN-
R0005, CWI (2000)

11. Hillier, F., Lieberman, G.: Introduction to Operations Research. McGraw-Hill, New York
(2005)

12. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Auto-
mated negotiation: prospects, methods and challenges. Int. J. of Group Decision and Negoti-
ation 10(2), 199–215 (2001)

13. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. In: Proc. of
AAMAS 2002, pp. 753–757 (2002)

14. Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press, Cambridge (2001)
15. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in

electronic commerce. Int Journal of Group Decision and Negotiation 12(1), 31–56 (2003)
16. Loveland, D.W.: Automated theorem proving: A logical basis. North-Holland, Amsterdam

(1978)
17. MacKie-Mason, J.K., Wellman, M.P.: Automated markets and trading agents. In: Handbook

of Computational Economics, North-Holland, Amsterdam (2006)
18. Muthoo, A.: On the strategic role of outside options in bilateral bargaining. Operations Re-

search 43(2), 292–297 (1995)
19. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.

Prentice-Hall, Inc, Englewood Cliffs (1982)
20. Pomerol, J.C., Barba-Romero, S.: Multicriterion Decision Making in Management. Kluwer

Series in Operation Research. Kluwer Academic Publishers, Dordrecht (2000)
21. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: A logic-based framework to compute

pareto agreements in one-shot bilateral negotiation. In: Proc. of ECAI 2006, pp. 230–234
(2006)

22. Ragone, A., Di Noia, T., Di Sciascio, E., Donini, F.M.: Propositional- logic approach to one-
shot multi issue bilateral negotiation. ACM SIGecom Exchanges 5(5), 11–21 (2006)

23. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge (1982)
24. Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis - The Science and Art of Col-

laborative Decision Making. The Belknap Press of Harvard University Press, Cambridge
(2002)

25. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. MIT Press, Cambridge (1994)
26. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97–109 (1982)
27. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education-

Prentice Hall, London (2003)
28. Sandholm, T.: Contract types for satisficing task allocation: I theoretical results. In: Proceed-

ings of the AAAI Spring Symposium (1998)
29. Trastour, D., Bartolini, C., Priest, C.: Semantic Web Support for the Business-to-Business

E-Commerce Lifecycle. In: Proc. WWW 2002, pp. 89–98 (2002)
30. Wellman, M.P.: Online marketplaces. In: Practical Handbook of Internet Computing, CRC

Press, Boca Raton (2004)
31. Wooldridge, M., Parsons, S.: Languages for negotiation. In: Proc of ECAI 2004, pp. 393–400

(2000)

Component-Based Standardisation of

Agent Communication

Frank Guerin and Wamberto Vasconcelos

Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{fguerin,wvasconc}@csd.abdn.ac.uk

Abstract. We address the problem of standardising the semantics of
agent communication. The diversity of existing approaches suggests that
no single agent communication language can satisfactorily cater for all sce-
narios. However, standardising the way in which different languages are
specified is a viable alternative. We describe a standard meta-language in
which the rules of an arbitrary institution can be specified. In this way
different agent communication languages can be given a common ground-
ing. From this starting point, we describe a component based approach to
standardisation, whereby a standard can develop by adding component
sets of rules; for example to handle various classes of dialogs and norma-
tive relations. This approach is illustrated by example. Eventually we en-
visage different agent institutions publishing a specification of their rules
by simply specifying the subset of standard components in use in that in-
stitution. Agents implementing the meta-language can then interoperate
between institutions by downloading appropriate components.

1 Introduction

We are interested in facilitating interoperability for agents interacting with dif-
ferent institutions on the Internet. For example, consider a personal agent of a
professor who is invited to participate in a conference (say to give a keynote
address and chair a session). The personal agent may connect with the con-
ference site and enter a collaborative dialogue with the agents of the various
other speakers, and the conference organiser, in order to arrange the schedule of
events. Subsequently the agent will connect to various online travel sites to pro-
cure airline tickets and accommodation, most likely by means of some auction
mechanism. Finally the agent may discover that an airline ticket it has bought
does not conform to what was advertised, thus it may seek compensation, lodging
an appeal with some arbitration site, and bringing evidence to support the claim.
Each of these interactions occurs in a different institution; the requirements for
the agent communication language (ACL) in each institution are quite different.
Yet, would it be possible to provide a standard language which encompasses all
requirements?

Past attempts to standardise agent communication [8,15,7]1 have managed
to standardise certain syntactic or pragmatic aspects, but fared poorly when it
1 Note that the FIPA’97 specification is cited here because the communication lan-

guage semantics has not changed since then.

M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 227–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 F. Guerin and W. Vasconcelos

comes to the issue of the semantics of the communication language. In practice,
implementers who claim to be using a particular standard ACL tend to ignore
those aspects of the standard that pose difficulties for their implementation
(often the formal semantics are ignored); additionally they often create ad hoc
extensions when none of the constructs of the standard quite fits their needs.
Effectively they invent their own custom dialect, which will not be understood
by any other system [22]. Given the diverse needs of different domains, it is
probably not feasible to come up with a single standard ACL which will cater
for the needs all possible agent systems. Furthermore, a standard ACL would be
rigid, precluding the possibility of agents negotiating the semantics of their own
custom ACL on the fly, for a particular purpose. The ACL would seem to be
the wrong level to standardise at; instead, it would seem appropriate to have a
standard way of specifying semantics, to allow developers (or agents themselves)
to create their own languages in a standard and structured way. Our proposal
is to create a standard meta-language which would allow different interaction
languages to be defined for different domains.

The core language, on which developers will build, must be sufficiently expres-
sive to allow any reasonable language to be specified. For this purpose we identify
a class of agent communication languages which are universal in the sense that
they could be used to simulate any other agent communication language which
is computable. We specify one such language and demonstrate its generality
by showing how it allows the specification of institutions in which agents can
change the rules of the institution itself. With this core in place, we envisage a
standard evolving gradually by adding “components”. Note that we are using a
non-standard meaning of “component”, i.e. we are not talking in the software
engineering sense where it encapsulates functions and communicates with other
components. However it does share some properties of a software component in
that it should be reusable and composable with other components. By “com-
ponent” we mean a set of rules to govern a certain aspect of an interaction.
For example, a component may provide rules for normative relations, defining
abstractions such as permissions and obligations, and how these change as mes-
sages are sent. Further components could then use these abstractions to specify
high-level protocols. High level protocols themselves can be specified as com-
ponents, and so composed with other protocols for flexible interactions. In this
way we can give developers the flexibility to define their own components, and
publish the specifications, so that others can develop further components, and
agents, to work with that language. It is hoped that this could bring together
the efforts of the community as similar efforts have done in software engineer-
ing by specifying standards for programming languages. A further advantage of
the component based approach is that all agents in a society do not necessarily
need to support the same components. Some agents may be less sophisticated
than others and may support simple reactive protocol components, while other
more sophisticated agents may be able to use components which allow them to
express their intentions and desires, with a well defined meaning. When agents
wish to communicate they would firstly discover which components they support

Component-Based Standardisation of Agent Communication 229

in common, and then they can determine the level at which they can interact.
This ability to implement lightweight versions of an agent communication lan-
guage is one of the desiderata for agent communication languages outlined by
Mayfield et al. [19].

In this paper we will illustrate the proposed approach with some examples.
We must stress that we are not advocating that the components described in
this paper be adopted as a standard; we merely provide simple examples to
demonstrate the feasibility of the component-based approach. This paper will
focus exclusively on the semantic issues as these have proved to be the most
problematic for the standardisation of agent communication. We therefore ig-
nore all pragmatic issues, e.g. how to find the name of an agent who provides
some service, authentication, registration, capability definition and facilitation
[16]. We assume an agent platform which can take care of all these issues. Prag-
matic issues are of course important, but they would require a full treatment in
their own right. Furthermore, the types of ACL which we will consider will be
restricted to those that have a social semantics; the primary reason for this is the
impossibility of verifying languages with mental semantics in an open system,
where agents’ internals cannot be easily inspected [22].

This paper is organised as follows. Section 2 looks at the most general frame-
work within which all practical ACLs could be specified. Section 3 defines an
agent communication language which allows unlimited extensions, and so forms
the base component which we later build on. Section 4 adds a component for
normative relations. Section 5 discusses how protocols can be added in general,
and adds an auction protocol. Section 6 describes a temporal logic component
we have added. Section 7 discusses related work and Section 8 concludes with a
look to the future.

2 Definition of an Agent Communication Language

In this section we want to define what an ACL is in the most general terms,
and to have a formal framework which captures the space of possible ACLs.
Following Singh’s seminal work on social commitments [22,23], there does seem
to be a consensus in the community that the semantics of communication for
open systems should be based on social phenomena rather than agents’ private
mental states [25,9,4,5]. We follow this social approach and we consider that all
“reasonable” languages for use in an open system must be of the social type. We
do not restrict ourselves to commitments: we allow arbitrary social facts2.

We define an ACL by specifying an institution. The existence of a commu-
nication language presumes the existence of an institution, which defines the

2 This means that we are not precluded from representing mental states that have
been publicly expressed by an agent [12]. This can be handled by treating the agent’s
publicly expressed mental attitudes as part of the state of affairs in the institution.
The difference between this and earlier mentalistic semantics [8,15,7] is that we do
not require that agents actually hold the mental states which they have publicly
expressed.

230 F. Guerin and W. Vasconcelos

meaning of language. Institutions are man-made social structures created to
regulate the activities of a group of people engaged in some enterprise. They
may be created deliberately, as is the case for formal organisations, or they may
be created by conventions evolving over time, as is the case for human culture.
Institutions regulate the activities of their members by inventing institutional
facts, a term due to Searle [21]. Some institutional facts take the form of rules
while others merely describe a state of affairs in the institution. Rules describe
how institutional facts can be created or modified. An example of an institu-
tional fact of the state of affairs type is having the title “doctor”; examples of
institutional facts which are rules are the rules in a University which describe
how the title can be awarded and by whom. The rule type of facts can be used to
provide a relationship between the real physical world and the institution; rules
can have preconditions which depend on the physical world and/or on other
institutional facts. For example, the submission of a thesis physically bound
in a specified format is a necessary precondition to the awarding of the title
“doctor”; the passing of an examination (a purely institutional fact) is another
precondition.

Rules relating to the physical world describe how events or states of the world
(typically the actions of members) bring about changes in the institutional facts.
The classic example of this is where an utterance by a member of an institution
can bring about an institutional fact, for example the naming of a ship: “I hereby
name this ship the Queen Elizabeth.” [3]. It is not possible for institutional
facts to bring about changes in the physical world because the institution itself,
being a collection of intangible institutional facts, cannot directly effect any
physical change in the world.3 Institutions may describe their rules in a form
which specifies physical effects in the world, but such rules are not strictly true
because the physical effects are not guaranteed to happen; the only way in which
the institution can influence the actions of its members is through the threat of
further institutional facts being created. For example a legal institution may
prescribe a term of imprisonment as the consequence of an institutional fact,
but it cannot directly bring about the imprisonment of a member; instead it can
state that a policeman should use physical force to bring the member to prison,
and the policeman can be threatened with the loss of his job if he does not. The
rule prescribing imprisonment can be reformulated as a rule which states that
if the policeman does not imprison the member by physical force or otherwise,
then the policeman loses his job. Thus all the rules relating to the physical world
take the form of descriptions of how events or states of the world bring about
changes in the institutional facts.

3 Institutions may indirectly affect the physical world if agents of the institution take
physical actions in response to institutional facts. We consider a bank balance to
be an institutional fact; it happens that banks have implemented physical agents
which act on this institutional fact and dispense money. Nevertheless, the bank
balance itself is not a physical fact. Likewise, if certain institutional facts are valued
or feared by agents, then they will act in response to them (hence the institutional
facts affect the physical world only through the agents).

Component-Based Standardisation of Agent Communication 231

A further point to note is that the institutional facts being modified by a rule
could be rules themselves. Many institutions do modify their rules over time; a
legal institution may allow arguments about the rules by which argumentation
should take place. This is accommodated by the framework described above,
because a rule can modify an institutional fact, and that institutional fact could
be another rule.

If we assume that any relevant change in the world’s state can be translated
into an event, then we can say (without loss of generality) that the institutional
facts change only in response to events in the world (we do not allow rules to
refer to states of the world). In a typical agent system we rely on the agent
platform to handle the generation of events. Typical events include messages
being transmitted, timer events and possibly other non communicative actions
of agents or events such as agent death. Let E be the set of possible events and
let F be the set of possible institutional facts. Let update be a function which
updates the institutional facts in response to an event; update : E × 2F → 2F .
Now in an institution I, it is the institutional rules R which indirectly define
this update function. The institution interprets the rules in order to define the
update function, let the interpreter function be I, where I maps R to some
update function. An institution I can then be fully specified by specifying the
interpreter I and the facts F ⊂ F . F is itself composed of the rule type of facts
R and the state of affairs type of facts A, so F = 〈R, A〉. Therefore institution I
can be represented by a tuple 〈I, F 〉. The F component fully describes the facts
and rules which currently hold in the institution.

This gives us the most general view of agent communication languages; by
specifying the tuple 〈I, F 〉 we can specify any ACL. It describes how institutional
facts F change in response to events as the multi-agent system runs. Given an
institution described by 〈I, F0〉 at some instant, and a subsequent sequence of
events e1, e2, e3 . . ., we can calculate the description of the institutional facts
after each event, obtaining a sequence of facts descriptions: F0, F1, F2, . . ., where
each Fi is related to Fi−1 as follows: Fi = updatei−1(ei, Fi−1) where updatei−1 =
I(Ri−1) (and Fi = 〈Ri, Ai〉 for all i). Interpreter I remains fixed throughout runs.

2.1 A Universal Agent Communication Machine

The rule interpreter I specified above is the immutable part of an institution.
The choice of I can place limits on what is possible with that institution, or give
it universal expressive power. Just as a universal Turing machine can simulate
the behaviour of any Turing machine, we can have an analogous universal agent
communication machine.

Definition 1. A universal agent communication machine is a machine which
can simulate the behaviour of any computable agent communication language.

By “simulate” here we mean that (given an appropriate set of input rules) it
could generate the same sequence of institutional facts in response to the same
sequence of events. In fact a universal Turing machine is a universal agent com-
munication machine. The input R to the machine produces the function update.

232 F. Guerin and W. Vasconcelos

Any update function that is computable can be produced in this way. Any Tur-
ing complete programming language can be used to implement a universal agent
communication machine.

3 Specifying Extensible Languages

Given a universal agent communication machine it is possible to specify an ACL
which has universal expressive power, in the following sense.

Definition 2. An agent communication language is said to have universal ex-
pressive power if the agents using it can transform its rules so that it simulates
the behaviour of any computable agent communication language.

Given a language defined by an institutional specification I = 〈I, 〈R, A〉〉 (as
described above), if I is a universal agent communication machine, then the
language will have universal expressive power if the rules R allow messages sent
(i.e. events) to program the machine in a Turing complete way.4 Languages with
universal power are of particular interest because they allow unlimited extension.
It is our thesis that a minimal language with universal expressive power is an
appropriate basis for standardising agent communication; i.e. the specification
of the programming language and core code can be agreed upon and published.
Such a choice of standard does not restrict agents to the rules given because it
can provide a mechanism through which agents can change the rules at runtime;
this can allow agents to introduce new protocols at runtime, for example. Such
protocols could come from trusted libraries, or could be generated by the agents
on the fly for the scenario at hand. If necessary, agents could also have a phase
of negotiation before deciding on accepting some new rules.

We define one such language in Fig. 1. We make use of Prolog as the logic
programming paradigm is particularly appropriate for agent communication;
there is also evidence that Prolog already enjoys considerable popularity in the
agent communication semantics community [1,20,14]. The interpretEvent/3
predicate takes as input the current set of facts F and an event Event, and
generates the new set of facts NewF. In line 3 the event is converted from its
predicate form to a list form, so that line 4 can append the old and new facts
variables to it. In line 5 the event is converted back from list form to its predicate
form. The next step will be to match the head of the event with the appropriate
rule in Rules (this corresponds to R in the formal model); however, we do not
want to change the rule itself by unifying its variables, this is why we make a
clean copy of it in line 6 before doing the matching in line 7 , via the member/2
predicate. Now that the body of the rule (Tail) has been retrieved, we can
invoke it in line 8 via callPred/2. Lines 9 to 17 define the recursive callPred/2
predicate. Line 10 handles the case where the rule body to be executed invokes
another rule within Rules, in which case callPred/2 is called to handle it. Line
4 This expressiveness implies undecidability, hence it may be impossible to prove prop-

erties for a system of agents using the language. However, if desired one can specify
a restricted and decidable language on top of this, by restricting the agents’ ability
to modify rules, as described in the sequel.

Component-Based Standardisation of Agent Communication 233

1 interpretEvent(F,Event,NewF):-
2 F=[Rules,Asserts],
3 Event=..EventAsList,
4 append(EventAsList,[F,NewF],NewEventAsList),
5 Pred=..NewEventAsList,
6 copy term(Rules,Rules2),
7 member([|[Pred|Tail]],Rules2),
8 callPred(Tail,Rules).

9 callPred([],).
10 callPred([HeadPred|Tail],Rules):-
11 copy term(Rules,Rules2),
12 member([|[HeadPred|NestTail]],Rules2),
13 callPred(NestTail,Rules),
14 callPred(Tail,Rules).
15 callPred([HeadPred|Tail],Rules):-
16 call(HeadPred),
17 callPred(Tail,Rules).

Fig. 1. Extensible Communication Language in Prolog

15 handles the case where the rule body to be executed invokes a built in Prolog
predicate, in which case it is called directly via call/1. It is important that
interpretEvent/3 forces the event to use a rule from Rules (i.e. it checks that
the rule is a member of Rules before passing control to callPred/2) so that
agents are unable to directly invoke Prolog predicates with their messages; their
messages are interpreted first. Without this precaution our interpreter would
not truly have universal expressive power, as it would always accept Prolog
predicates, which could be used to reprogram it; hence it would be impossible to
define a language which restricted the possible things which events could change.

Rules stored in R are written in the form of lists, with an index number at
the head of each rule. A Prolog clause of the form “pred1(A,B):-pred2(A),
pred3(B)” becomes “[1,pred1(A,B),pred2(A),pred3(B)]”. This corresponds
to the Horn clause pred2 (A) ∧ pred3 (B) → pred1 (A, B). Some sample rules are:

[[1, addRule(Rule,[R1,A1],[NewR1,A1]),
append(R1,[Rule],NewR1)],

[2, deleteRule(Index,[R2,A2],[NewR2,A2]),
delete(R2,[Index|_],NewR2)]

]

Let the above program be called prog and the interpreter I = 〈prog,Prolog〉. Let
the assertions A be initially empty and rules R be the two rules above.

Theorem 1. The ACL specified by institution 〈I, 〈R, A〉〉 has universal expres-
sive power.

The truth of this follows from that fact that Prolog is Turing-complete, and
addRule can be used to add arbitrary predicates, and can therefore give subse-
quent events access to the underlying Prolog language (or restrict their access).
Despite the ease with which this can be done, to our knowledge this is the first

234 F. Guerin and W. Vasconcelos

example of such an ACL. We propose that an ACL such as this would form
the core component of a standard. This is only the first step of standardisation
however. Standards will also need to define libraries and tools which will make
the base machine more usable.

Let us briefly illustrate how we can begin to use the above ACL. The following
is an example of an event:

addrule([3,assert(Fact,[R,A],[R,[Fact|A]])])

After interpreting this event, the rules R will be updated so that subsequent
assert events cause the addition of an element to the assertions A. For ex-
ample, a subsequent event assert(alive(agent1)) would add alive(agent1)
to A. Note that this is invoking our rule 3 and not Prolog’s built-in assert/1
predicate. At this point we will avoid giving an extended example of the kind
of interaction we can capture. Instead we want to show the component based
approach to standardisation, so we will eventually illustrate only a very simple
auction protocol, but we will build it upon some useful components.

We now add some basic “housekeeping” rules. We will have a timer predicate
in A, which records the current time, e.g. timer(524). We will assume that our
agent platform generates timer events at regular intervals. Whenever a timer
event happens we want to update the clock and execute a set of housekeeping
rules. These rules perform housekeeping checks, for example to see if an agent
has failed to meet a deadline. The following rule (in R) handles the timer event:

[3, timer(Time,[R,A],[NewR,NewA]),
replace(A,timer(Time),UpdatedA),
housekeeping([R,UpdatedA],[NewR,NewA])

]

Here we have assumed the existence of a replace predicate which replaces a
named predicate in A with a new version. The initial housekeeping predicate
simply preserves the institutional facts F ; subsequent components will modify
the predicate, adding their own rules.

It is desirable to add another layer for the interpretation of agent communi-
cations. We create a speechAct rule for this purpose. Agents communicate by
sending messages (events) of the form speechAct(sender, receiver, performative,
content). We must rely on the platform’s message handling layer to discard any
messages where the sender parameter is falsified; there is no way to do this
once the event is processed by the interpreter. We also rely on the platform to
distribute the message to the intended recipients. The message event is then
handled by our speechAct rule. With this in place we protect the lower level
operations from direct access by the agents. We do not want agents to be able to
directly invoke the timer event or the rule changing events; however, if desired,
we can still create speech acts which allow the modification of certain rules in R
by suitably empowered agents. Now the speechAct predicate becomes particu-
larly useful to gather together all those operations which need to be done during
the processing of any message (e.g. check roles, permissions and empowerments).
This is described in Section 4.

Component-Based Standardisation of Agent Communication 235

It is worth noting that agents can only process the events they have observed;
hence, when the update rule is implemented in agents, they only build a view
of the institutional facts from their individual perspectives. If each agent ap-
plies the rules on limited information in this way, it is entirely possible that the
institutional facts from the perspective of two different agents may have con-
tradictory assertions. This is not a problem, so long as the developer bears this
in mind when designing components (protocols for example). Specifications of
norms should not create “unfair” rules, for example creating an obligation for
an agent to do something, and leaving the agent unaware of the existence of the
obligation. In most practical systems which we envisage, there will be no need
for any agent to maintain this global view and indeed in a large system it might
not be feasible to maintain it; it will be sufficient for each agent to maintain an
individual perspective, which coincides with the perspective of other agents for
any interactions they share.

Obviously we need to be particularly careful if we allow agents to change
the rules R, lest conversational participants have contradictory beliefs about
the meanings of the messages they are exchanging. At least two solutions can
be envisaged: either all members of the institution need to be informed of any
change, or a subgroup can decide to set up a virtual organisation (having new
communicative actions and corresponding rules which apply only within that
virtual organisation, the old ones still applying outside). The later solution is
probably the more practical of the two.

4 Normative Relations Component

Various different notions are employed by institutions to describe their rules; Ser-
got distinguishes between notions of power, permission and practical possibility
[13]. Power is the ability of a member to bring about changes in the institutional
facts; i.e. for each event which changes F we can describe which members of
the institution can effect those changes. For convenience it is common to define
roles and define the power of a role. This is because the occupants of roles often
change, while the powers associated with the role do not.

Permission can be used to describe those actions which ought or ought not to
be taken. Permission is distinct from power because a member may be empow-
ered to do something even though he is not permitted; in this case: if he does
it then it counts, i.e. it creates the institutional fact. For example, an examiner
could award a student a pass on submission which falls short of the required
standards as set out by the institution. In this case the examiner’s action is
not permitted but still counts as a pass under the rules of the institution; the
examiner may be subject to some sanction if the abuse is discovered, but this
may not necessarily revoke the fact that the student has passed.

The notion of permission leads to its dual: obligation; obligation is equivalent
to “not permitted not to”. Obligation can be captured by a rule which specifies
a sanction if an action is not done. Because we will be testing agents’ compliance
over finite models, we must always specify a time-limit for obligations. It is no

236 F. Guerin and W. Vasconcelos

good for an agent to promise something and deliver “eventually”, if there is no
upper bound on the time taken.

Practical possibility is another distinct notion which some institutions may
need to represent explicitly. For example, suppose there is a rule defining the
sanction to be placed on a member in the case of failing to fulfil an obligation,
there may be a need to exempt the case where the member was physically inca-
pable of fulfilling the obligation at the time. Thus there could be institutional
facts to represent the physical capabilities of each agent; i.e. a rule will define
the events in the physical world which count as the agent being recognised by
the institution as being capable or incapacitated. We do not implement practical
possibility however.

4.1 Implementing Norms

The normative relations we implement are defined by predicates stored in the as-
sertions A. Relations can apply to agents directly or via roles ; an agent occupies
one or more roles (also stored in the assertions A). There are four types of nor-
mative predicate: power, permitted, obliged and sanction. Sanctions are defined
for actions which agents should not do. Permitted or obliged actions are treated
as exemptions to these sanctions, i.e. the sanction applies unless the agent was
permitted or obliged. Power and permission have arity 3: the first parameter is
the agent name (or role name), the second is the performative of the speech act
he is empowered/permitted to do, and the third is a condition. For example

power(bidder,bid,[Content=[C],C>47])

means that any agent in the role of bidder is empowered to send a bid speech
act provided it complies with the following conditions: the content of the act
must be a list containing a single number whose value is greater than 47. If the
condition is the empty list then it is always true. Sanctions and obligations add
a further (fourth) parameter, which is the “sanction code”. Following [20] we
will associate a 3-figure “sanction code” with each norm violation (similar to the
error codes used in the Internet protocol HTTP), in our case higher numbers are
used for more egregious violations. The sanction codes gathered by each agent
as it commits offences are merely recorded in a list. The use of codes is just a
convenient way to record sanctions without yet dealing with them; we would
require a separate component to impose some form of punishment. Finally the
obligation adds a fifth parameter which is the deadline by which the specified
speech act must be sent.

The algorithm shown in Fig. 2 is added to the speechAct rule to handle the
normative relations, it effectively defines an operational semantics for the nor-
mative relations. With this implementation we make obligation imply permis-
sion and power. It is in this algorithm that roles are consulted to retrieve the
names of the agents occupying the roles; e.g. when checking if an agent who has
just sent a message is obliged (and hence permitted), the algorithm will consult
the facts to see what roles the sending agent occupies. We also need to add the

Component-Based Standardisation of Agent Communication 237

following to the housekeeping rule (recall that the housekeeping rule is invoked
on every timer event):
– For each obligation check if it has timed out. If so, apply the sanction to the

agent (or all agents occupying the obliged role) and remove the obligation
from A.

Note that we are assuming that the existence of a speechAct rule is an agreed
standard across component developers, so that any new components can add
checks and guards to this rule.

algorithm HANDLE-NORMS

1. Input: a speech act with Sender, Receiver, Performative, Content
2. Check if there is an obligation which requires that Sender (or one of the roles he

occupies) send this speech act. If so remove the obligation from A and jump to
5.

3. Check if there is a sanction for Sender (or one of the roles he occupies) sending
this speech act: If not, go to the next step; If so,

◦ check if there is a permission for Sender (or one of the roles he occupies) to
send this speech act: If so, go to the next step; If not, apply the specified
sanction.

4. Check if Sender (or one of the roles he occupies) is empowered to send this speech
act: If not, discard the act and exit this algorithm.

5. Process the act as normal.

Fig. 2. Algorithm to Handle Normative Relations

5 Protocol Components

Protocols are additional components of the ACL, they are each encoded via
their own rules in R. Each protocol has a unique name and may be represented
by a number of clauses in R. Protocols essentially determine what actions are
to be taken next, given the current state and an event that happens. They
do this by consulting the current state and modifying the normative relations
according to the event that has just happened. Agents initiate protocols by
using the special speech act initProtocol ; the speechAct predicate passes control
to the protocol on initiation. A protocol initiates a “sub-conversation” within
the institution. All the assertions describing the protocol’s state of execution are
gathered together as an indexed list within A. In order to ensure the index is
unique, the initiator will compose an index by concatenating his name with a
positive integer which increases with each new protocol he initiates. Subsequently
all speech acts indexed with the protocol’s identifier will be processed by the
protocol’s rules (instead of the standard rules which process speech acts that
are not part of any protocol). Normative relations defined within the protocol’s
“space” in A only apply to messages that are part of that protocol. Timer events
are processed by all protocols running at any time. Agents are free to enter
multiple parallel protocols, each being a separate sub-conversation. Sending a
exitProtocol message terminates the protocol and removes its assertions from A.

238 F. Guerin and W. Vasconcelos

5.1 Example Protocol: Auction

The Vickrey auction protocol below is expected to be invoked by a speech act
with content [Index,Protocol,Item,OffersOver,ClosingTime]. These then become
variables accessible to the initiator clause of the protocol rule, along with the
initiator of the protocol and the list of receivers. Each clause has access to the
variables Sndr and Rcvr from the event that invoked the clause (we cannot use
the names Sender and Receiver as these are used by content checking conditions).
The Prolog-style pseudocode below describes a series of clauses, one to handle
each speech act that can happen during the execution of the protocol. To keep
the presentation concise we have avoided presenting the example in real Prolog
code.

initiator:
add role(Sndr,auctioneer)

// sender of initiating message takes on role of auctioneer
for each Rcvr add role(Rcvr,bidder)

// each receiver of initiating message takes on role of bidder
add power(bidder,bid,[Content>OffersOver])
add permitted(bidder,bid,[Receiver=R,

role(R,auctioneer),Content>OffersOver])
// bidders are empowered and permitted to bid
// provided the content satisfies the specified constraints

add sanction(bidder,bid,[],100)
// any other bid incurs a sanction

retrieve global.timer(Time)
add timeout(closingTime+Time)

// timeout is simply a newly defined predicate in the social facts
add item(Item)
add high1(0)
add high2(0)

if bid([auctioneer,NewBid])
retrieve high1(High1)
retrieve high2(High2)

// the current highest and second highest bids
if NewBid>High1 then replace winner(_) with winner(Sndr)

replace high1(_) with high1(NewBid)
else if NewBid>High2 then replace high2(_) with high2(NewBid)

if timer(Time)
retrieve timeout(T)
if Time>T then
retrieve high1(High1)
retrieve high2(High2)
NewTime = Time+50
if High1=High2 then

// if nobody has bid then exit
obliged(auctioneer,exitProtocol,[Receiver=bidder],101,250)
else

// else declare the winner

Component-Based Standardisation of Agent Communication 239

remove power(bidder,bid,_)
add power(auctioneer,inform,[])
retrieve winner(Winner)
add obliged(auctioneer,inform,

[Receiver=Winner,Content=[won,High2]],103,NewTime)
add obliged(auctioneer,exitProtocol,

[Receiver=[bidder]],101,NewTime)

if inform([won,Price]) then
retrieve global.timer(Time)
retrieve winner(Winner)
retrieve item(Item)
NewTime = Time + 150

// this is the time by which payment must be made
add global.obliged(auctioneer,inform,

[Receiver=bank,Content=[transfer,Item,Winner]],102,NewTime)
add global.obliged(Winner,inform,[Receiver=bank,

Content=[credit,Price,auctioneer]],102,NewTime)

Note that the final clause creates obligations which are to persist after the proto-
col’s termination (this is the meaning of add global...). When this is done the
agent’s name is put in the obligation instead of the role name. This is because
the role will cease to exist on termination of the protocol (i.e. the fact asserting
it is within the indexed list of facts for that protocol, and hence will be deleted
when the protocol terminates), whereas we want the agent to still be obliged to
pay even after the auction is finished.

5.2 Auction Animation

The initiating speech act is

speechAct(alice, [bob,claire], initProtocol,
[alice1,auction,IPRowner,47,200])

Here initProtocol is the performative and auction is the protocol to be initi-
ated. This starts a new conversation state, having its assertions as an indexed
list within A. The index is alice1. Subsequent messages which are part of this
protocol execution must be tagged with this index at the head of their content
list. After this the following assertions hold within the indexed list

role(alice,auctioneer)
role(bob,bidder)
role(claire,bidder)
power(bidder,bid,[Content=[C],C>47])
power(auctioneer,exitProtocol,[Receiver=[bob,claire]])
permitted(bidder,bid,[Receiver=R,role(R,auctioneer),Content=[C],>47])
sanction(bidder,bid,[],100)

The next speech act is a bid by bob:

speechAct(bob, alice, bid, [alice1,53])

240 F. Guerin and W. Vasconcelos

The only effect of this is to add a predicate recording this as the highest bid.
Bidders still retain the power and permission to revise their bids. Next we have
claire bidding 51, which adds a predicate recording the second highest bid. Then
the timeout event happens. This results in the power to bid being revoked. Agents
are still permitted to bid, but it has no effect. We now have the following norms
for the auctioneer:

power(auctioneer,inform,[])
obliged(auctioneer,inform,[Receiver=bob,Content=[won,51]],103,250)
obliged(auctioneer,exitProtocol,[Receiver=[bob,claire]],101,250)

Note that the auctioneer is empowered to inform anything to the bidders; what-
ever he says, it counts. However, he is obliged to announce the winner and losers
as expected in a Vickrey auction. The auctioneer’s next messages are

speechAct(alice, bob, inform, [alice1,won,52])
speechAct(alice, [bob, claire], exitProtocol,[alice1])

This terminates the protocol and generates two obligations which exist in the
“root” of A, i.e. not in the sublist indexed by alice1.

obliged(alice,inform,[Receiver=bank,
Content=[transfer,IPRowner,bob]],102,400)

obliged(bob,inform,[Receiver=bank,Content=[credit,52,alice]],102,400)

Note that alice has overcharged bob. Without any third party monitoring, there is
no way for him to know. However, we could imagine a subsequent dialog where
claire reveals her bid to him and he lodges a complaint with an arbitration
authority. If the evidence is deemed to be sufficient, the protocol specification
can be consulted again to determine the appropriate sanction, i.e. that sanction
103 should be enforced on alice.

6 Temporal Logic Component

Our obliged predicate only allows us to specify that an action must be done before
some future time. We have also added a temporal logic component which allows
us to express more complex conditions. For example we can specify that an agent
is obliged to ensure that a certain condition holds true, where the condition is
expressed in a simple temporal logic (a subset of LTL), but ultimately refers
to the truth values of predicates in A. We are interested in making these kinds
of normative specifications for the behaviour of agents, and then testing their
compliance with the specification by observing their behaviour at runtime (by
observing finite runs of the system). This is the same type of testing as described
by Venkatraman and Singh [24]; i.e. given an observed run of the system we can
determine if the agents have complied so far, but not if they will comply in
other circumstances. We have found that the standard temporal logic operator
� (at some time in the future) is not very useful for our specifications. The
linear temporal formula �p promises that p will eventually true, but there is no
way to falsify it in a finite model; i.e. if we require that an agent perform some
action eventually, it is not possible to be non compliant in a finite model. Hence

Component-Based Standardisation of Agent Communication 241

this formula becomes meaningless when referring to agent behaviour in a finite
observed sequence. A typical type of formula we need to specify is that some
condition must hold continuously before a deadline. This can be done with the U
(until) operator. The formula p Uq means that p must hold continuously until q
becomes true, and q should eventually become true (this second part is of course
redundant in our finite sequences). We include Boolean connectives ¬, ∧ and ∨
in the language. The � operator (now and at all future times) is not included in
our language because, in a finite sequence, � p is the same as p U false. Despite
the fact that our temporal logic only has one temporal operator, it is still quite
expressive, as nestings of U can be used, as well as the Boolean connectives.

Using this simple language we have constructed a model checking component
which keeps track of the temporal formulae which an agent is obliged to keep
true; i.e. the checker “carries forward” the pending formulae and checks each
new state as timer events are processed. This allows the formulae to be used in
normative specifications, and sanctions to be triggered automatically when the
formulae are falsified. We use the method of particle tableau from [18] to check
the formulae. This allows an efficient incremental construction of the relevant
portion of the tableaux.

7 Related Work

There are few recent works which address standardising agent communication
semantics. It appears that the effort has been abandoned since the attempts of
FIPA and KQML [8,15,7] in the 90’s. However, in terms of technical ideas, there
are some recent proposals which are moving in directions similar to what we
propose.

In [10] it is demonstrated that a system of production rules can be used to
implement many agent institutions that had originally been specified with very
diverse formalisms. This is similar to our proposal as it is given a common com-
putational grounding to proposals which were previously hard to compare. It also
shows that if we are considering computational implementations of agent com-
munication, then one simple language will be sufficient to implement whatever
diverse notions we choose to employ to govern the agents.

In [20] the possibility of agents modifying the rules of the institution is men-
tioned; it is stated that this would require “interpretable code or some form of
dynamic compilation”. In [2] the event calculus formalism has been implemented
to animate a specification of a rule governed agent society, but it is also stated
that features of the underlying programming language could be made accessible
to complement the event calculus formalism; this comes closer to the flavour of
our proposal. In [11] normative relations are implemented in the Jess production
rule system. The authors mention the possibility of “societal change”, where so-
cieties may “evolve over time by altering, eliminating or incorporating rules”.
This societal change facility is not actually implemented in [11], but the authors
do specify norms in a computationally grounded language based on observable
phenomena.

242 F. Guerin and W. Vasconcelos

In [6] there is a proposed development methodology which is similar to the
“component based” aspect of our approach; generic protocols are specified, and
then transformers can be applied to them to capture variations of the protocol
for specific contexts. The work of [26] advocates the need for tools to assist
developers in protocol design, while also showing how protocols can be built on
the social commitments approach to agent communication semantics; this type
of tool support and structured development is exactly what we expect will be
needed to take our standardisation approach forward.

8 Conclusions and Future Work

There are two requirements which should be fulfilled as a precondition to making
a standard for agent communication which has a reasonable prospect of actually
being adopted. One is the expressive power to allow developers to do what they
want, and the second is the ease of use (for which tools are required). The first
aspect is easy, as we have shown, the second will take more effort. Even with
the few components we described, we can see already that programming moves
to a higher level as we add more components. We expect that standardisation
will need to proceed by means of evolving libraries and tools which make the
agent developers job easier. In this process the role of a standards body would
be to accredit components and publish them, and to standardise the form of
their documentation.

One avenue for future work is to explore the possibility of creating a com-
ponent which defines a more intuitive semantics for common speech acts. The
auction example above is a very mechanistic protocol, in that there is little room
for flexibility and innovation among the agents. The social facts we created were
solely concerned with describing sufficient information for the execution of the
auction. Thus the semantics of these messages was purely procedural. In more
flexible protocols we could create social facts which capture more of a natural hu-
man style of communication. For example, a “request for information” message
sent by an agent could create a social fact which describes that the sender has
expressed a desire to know something. Other participants in the society could
then be creative in how they respond, because they can recognise the need of
the speaker, rather than being constrained to only reply according to some rigid
protocol, as would be the case for procedural semantics.

Another direction we are currently experimenting with is our temporal logic
component which model checks temporal logic formulae. We plan to extend
the expressiveness of its language. Argumentation is yet more interesting as it
typically requires the use of nonmonotonic logics: an agent may undercut another
agent’s argument, and so force a conclusion to be retracted. Here we would code
the rules defining acceptability of an argument. The ability of a meta-interpreter
to specify a depth limit on proofs is particularly useful for this purpose; in order
to have a common consensus on what arguments are accepted we need to specify
the limits on the resource bounded reasoning [17]. Argumentation also introduces
the possibility of negotiating changes to the rules of the institution itself. There
will also no doubt be considerable interest in developing components for various

Component-Based Standardisation of Agent Communication 243

logics such as the C+ action language (which is gaining popularity [2,6]) and
various modal logics.

Eventually it is hoped that different electronic institutions could publish the
components which comprise their communication language in a machine readable
format, so that a roaming agent could come and join the institution without
needing to be programmed to use that particular language in advance. This is
an ambitious goal, as the agent would need not to just know the rules, but also
its strategy for participation. However, if we restrict our attention to certain
types of dialog, and their variants (e.g. auctions) then it does seem feasible.

References

1. Agerri, R., Alonso, E.: Semantics and Pragmatics for Agent Communication. In:
Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808,
Springer, Heidelberg (2005)

2. Artikis, A., Sergot, M., Pitt, J.V.: Specifying Norm-Governed Computational So-
cieties. Technical Report 06-5, Dept. of Computing, Imperial College, London, UK
(2005)

3. Austin, J.L.: How To Do Things With Words. Oxford University Press, Oxford
(1962)

4. Bentahar, J., Moulin, B., Meyer, J.-J.C., Chaib-Draa, B.: A Computational Model
for Conversation Policies for Agent Communication. In: Leite, J.A., Torroni, P.
(eds.) Computational Logic in Multi-Agent Systems. LNCS (LNAI), vol. 3487,
Springer, Heidelberg (2005)

5. Chaib-Draa, B., Labrie, M.-A., Bergeron, M., Pasquier, P.: An Agent Communica-
tion Language Based on Dialogue Games and Sustained by Social Commitments.
Autonomous Agents and Multi-Agent Systems 13(1), 61–95 (2006)

6. Chopra, A.K., Singh, M.P.: Contextualizing Commitment Protocols. In: AAMAS.
Procs. 5th. Int’l Conf. on Autonomous Agents and Multi-Agent Systems, ACM
Press, New York (2006)

7. Cohen, P.R., Levesque, H.J.: Communicative Actions for Artificial Agents. In: Int’l
Conf. on MASs, pp. 65–72. MIT Press, Cambridge (1995)

8. FIPA. [FIPA OC00003] FIPA 97 Part 2 Version 2.0: Agent Communication Lan-
guage Specification. In: Website of the Foundation for Intelligent Physical Agents
(1997), http://www.fipa.org/specs/fipa2000.tar.gz

9. Fornara, N., Vigano, F., Colombetti, M.: Agent communication and arti-
ficial institutions. Autonomous Agents and Multi-Agent Systems (2006),
doi:10.1007/s10458-006-0017-8

10. Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions.
SIGEcomm Exchanges 5(5) (2006)

11. Garcia-Camino, A., Rodriguez-Aguilar, J.-A., Noriega, P.: Implementing Norms in
Electronic Institutions. In: AAMAS. Procs. 4th Int’l Conf. on Autonomous Agents
& Multiagent Systems, ACM Press, New York (2005)

12. Guerin, F., Pitt, J.V.: A semantic framework for specifying agent communication
languages. In: ICMAS 2000. Fourth International Conference on Multi-Agent Sys-
tems, pp. 395–396. IEEE Computer Society, Los Alamitos (2000)

13. Jones, A.J.I., Sergot, M.J.: A formal characterisation of institutionalised power.
Journal of the IGPL 4(3), 429–445 (1996)

http://www.fipa.org/specs/fipa2000.tar.gz

244 F. Guerin and W. Vasconcelos

14. Labrou, Y.: Semantics for an agent communication language. PhD thesis, Balti-
more, MD: University of Maryland Graduate School (1996)

15. Labrou, Y., Finin, T.: A semantics approach for kqml – a general purpose commu-
nication language for software agents. In: CIKM 1994. Third International Confer-
ence on Information and Knowledge Management, pp. 447–455 (1994)

16. Labrou, Y., Finin, T., Peng, Y.: The current landscape of agent communication
languages (1999)

17. Loui, R.P.: Process and policy: Resource-bounded nondemonstrative reasoning.
Computational Intelligence 14(1), 1 (1998)

18. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems (Safety), vol. 2.
Springer, New York (1995)

19. Mayfield, J., Labrou, Y., Finin, T.: Desiderata for agent communication languages.
In: AAAI 1995 Spring Symposium. Proceedings of the AAAI Symposium on In-
formation Gathering from Heterogeneous, Distributed Environments, pp. 347–360.
Stanford University, Stanford (1995)

20. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for
virtual organizations. In: AAMAS 2005. Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multi-Agent Systems, Utrecht, ACM
Press, New York (2005)

21. Searle, J.R.: What is a speech act? In: Martinich, A.P. (ed.) Philosophy of Lan-
guage, 3rd edn., Oxford University Press, Oxford (1965)

22. Singh, M.: Agent communication languages: Rethinking the principles. IEEE Com-
puter 31(12), 40–47 (1998)

23. Singh, M.: A social semantics for agent communication languages. In: IJCAI Work-
shop on Agent Communication Languages, Springer, Berlin (2000)

24. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols:
Enabling open web-based multiagent systems. Autonomous Agents and Multi-
Agent Systems 2(3), 217–236 (1999)

25. Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent
communication. In: Proceedings of the second international joint conference on Au-
tonomous agents and multiagent systems table of contents, Melbourne, Australia,
pp. 528–535 (2003)

26. Yolum, P.: Towards design tools for protocol development. In: AAMAS 2005. Pro-
ceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, pp. 99–105. ACM Press, New York (2005)

Author Index

Bordini, Rafael H. 104
Bosse, Tibor 50, 175

Chopra, Amit K. 36

Di Noia, Tommaso 211
Di Sciascio, Eugenio 211
Donini, Francesco M. 211

Garćıa-Camino, Andres 158
Groza, Adrian 193
Guerin, Frank 227

Harland, James 140
Hindriks, Koen V. 86

Kollingbaum, Martin J. 158

Letia, Ioan Alfred 193
Lloyd, John W. 122
Luck, Michael 69

Meneguzzi, Felipe 69

Ng, Kee Siong 122
Norman, Timothy J. 158

Paurobally, Shamimabi 18
Pham, Duc Quang 140

Ragone, Azzurra 211

Sharpanskykh, Alexei 50, 175
Shaw, Patricia H. 104
Singh, Munindar P. 36
Sterling, Leon 1

Treur, Jan 50, 175

van Riemsdijk, M. Birna 86
Vasconcelos, Wamberto 158, 227

Winikoff, Michael 140
Wooldridge, Michael 18

	Title Page
	Preface
	Organization
	Table of Contents
	Agent-Oriented Modelling: Declarative or Procedural?
	Background
	Agent-Oriented Modelling
	Agent-Oriented Software Engineering
	What Is a Model?
	Secret Touch Case Study

	Conceptual Space
	Motivation Layer Models
	Design Layer Models
	Declarative or Procedural?
	Conclusions

	Joint Conversation Specification and Compliance
	Introduction
	Joint Intention Theory
	Logic of JCA
	Syntax of LJCA
	Semantics of LJCA
	Axiomatisation of LJCA

	A Framework in LJCA for Joint Conversations
	Assumptions
	Example Group Formation
	Compliance in a Joint Conversation
	Standard Compliance
	Strong Compliance.

	Properties of Joint Conversations
	Related Work
	Conclusions

	Interoperation in Protocol Enactment
	Introduction
	Agents
	Interoperability
	Formalization

	Discussion
	Temporal Logic
	Blocking Receives
	Literature
	Directions

	Integrating Agent Models and Dynamical Systems
	Introduction
	Modelling Dynamics in LEADSTO
	The LEADSTO Language
	Solving the Initial Value Problem in LEADSTO: Euler’s Method

	Modelling the Predator-Prey Model in LEADSTO
	The LEADSTO Language
	Extending the Standard Predator-Prey Model with Qualitative Aspects
	Example Hybrid LEADSTO Specification - Model for Conditioning

	Simulating the Predator-Prey Model by the Runge-Kutta Method
	Simulation with Dynamic Step Size
	Analysis in Terms of Local-Global Relations
	The LEADSTO Language
	Mathematical Analysis in TTL: Global Dynamic Properties
	Mathematical Analysis in TTL: Local Dynamic Properties
	Logical Relations Between Local and Global Properties

	Discussion
	References

	Composing High-Level Plansfor Declarative Agent Programming
	Introduction
	AgentSpeak
	Planning in an AgentSpeak Interpreter
	The Planning Action
	Chaining Plans into Higher-Level Plans
	Translating AgentSpeak into STRIPS
	Executing Generated Plans
	Coping with Failure

	Experiments and Results
	Related Work
	Jason
	X-BDI
	Formalisations of Declarative Goals
	Discussion

	Concluding Remarks

	Satisfying Maintenance Goals
	Introduction
	Motivating Example: A Carrier Agent
	The Basic Scenario
	Conflicts Between Achievement and Maintenance Goals

	The GOAL Language
	Semantics of Maintenance Goals
	Operational Semantics of Maintenance Goals
	Properties

	Detecting and Revising Goal Conflicts
	Conclusion and Related Work

	Towards Alternative Approaches toReasoning About Goals
	Introduction
	Reasoning About Goals
	Reasoning About Goals Using Petri Nets
	Experimental Results and Analysis
	Conclusions and Future Work

	Reflections on Agent Beliefs
	Introduction
	Logic
	Beliefs as Function Definitions
	Acquiring Beliefs
	Reasoning with Beliefs
	Conclusion

	Modeling Agents’ Choices in Temporal Linear Logic
	Introduction
	Background
	Temporal Linear Logic
	A Model for Agent Interaction

	Desiderata for a Choice Calculus
	Modeling Decisions on Choices
	A Choice Calculus
	Splitting a Formula
	Discussion and Conclusion

	Conflict Resolution in Norm-RegulatedEnvironments Via Unification and Constraints
	Introduction
	Virtual Organisations
	Norms
	Norm Conflicts
	Conflict Detection
	Conflict Resolution

	Norm-Aware Agent Societies
	Indirect Conflicts
	Example: Agents for the Grid
	Conflict Resolution
	Indirect Conflict Resolution
	Solving Conflicts Arising from Delegation

	Related Work
	Conclusions, Discussion and Future Work

	On the Complexity Monotonicity Thesis forEnvironment, Behaviour and Cognition
	Introduction
	Evolutionary Perspective
	Variations in Behaviour and Environment
	Modelling Approach
	Behavioural Cases
	Stimulus-Response Behaviour
	Delayed Response Behaviour
	Goal-Directed Behaviour
	Learning Behaviour

	Formalisation of Temporal Complexity
	Discussion
	References

	Structured Argumentation in a Mediatorfor Online Dispute Resolution
	Introduction
	Argumentation Framework
	Types of Agents for ODR
	Basic Component
	Tactical Component
	Attitude Component

	Choosing the Proper Strategy
	Dispute Resolution Phases
	Commencement of Dispute
	Discovery
	Pre-trial
	Arbitration
	Post-trial

	Related Work
	Conclusions

	Extending Propositional Logic with Concrete Domainsfor Multi-issue Bilateral Negotiation
	Introduction
	Negotiation Scenario
	Representation of Issues
	Multi Issue Bilateral Negotiation in P(N)
	Utilities for Numerical Features
	Computing Pareto Agreements in P(N)
	Objective Functions
	The Multi Objective Optimization Problem

	The Bargaining Process
	Related Work and Discussion

	Component-Based Standardisation ofAgent Communication
	Introduction
	Definition of an Agent Communication Language
	A Universal Agent Communication Machine

	Specifying Extensible Languages
	Normative Relations Component
	Implementing Norms

	Protocol Components
	Example Protocol: Auction
	Auction Animation

	Temporal Logic Component
	Related Work
	Conclusions and Future Work

	Author Index

